A Survey on Rotavirus Associated Diarrhea in 5 Main Cities of Iran

Farzaneh Jadali 1, Abdollah Karimi 2*, Fatemeh Fallah 3, Mohsen Zahræi 4, Abdolreza Esteghamati 4, Masoumeh Navidinia 3, Saadat Adabian 3

1 Department of Pediatric Pathology, Pediatric Infections Research Center (PIRC), Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Pediatric Infections Research Center (PIRC), Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Department of Medical Microbiology, Pediatric Infections Research Center (PIRC), Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
4 Department of Pediatric Infectious Disease, Faculty of Medical Science, Tehran University of Medical Sciences, Tehran, IR Iran

ARTICLE INFO

Article type: Original Article

Article history:
Received: 28 May 2012
Revised: 09 Jun 2012
Accepted: 20 Jun 2012

Keywords:
Enzyme-Linked Immunosorbent Assay
Serology
Gastroenteritis
Rotavirus

ABSTRACT

Background: Rotaviruses a major group of viruses that cause severe gastroenteritis in young children worldwide. Many different viruses can cause gastroenteritis, including Noroviruses, Adenoviruses, Sapoviruses, and Astroviruses. Serum antibody studies show that most of the children are infected with Rotavirus at least once in their life by the age of 3. In the world, approximately 400-600 thousand children in poor countries die annually by Rotavirus-associated dehydration. Most of the deaths occur in these countries because of delay in treatment. Despite low death rates in industrialized countries, good hygiene and sanitation do not appear to reduce the prevalence or prevent the spread of Rotavirus.

Objectives: This study was aimed to detect Rotavirus in stool samples of infected patients using enzyme-linked immunosorbent assay (ELISA) serological method in 5 cities of Iran.

Materials and Methods: In this descriptive study, 2988 stool samples of patients with acute gastroenteritis were collected from children’s hospitals of 5 main cities of Iran. The samples were sent in frozen condition to pediatric infection research center in Tehran and stored at -70°C. ELISA test was performed for detection of Rotavirus antigens. The mean age of study population was 1 to 5 years.

Results: ELISA method on 2988 stool samples from 5 cities revealed rotavirus-positive results in 55.48% cases, including 8.97% in Tehran, 7.56% in Tabriz, 7.76% in Mashhad, 14.42% in Shiraz, and 16.77% in Bandar Abbas. 59.2% of positive samples occurred in males and 40.8% in females.

Conclusions: Rotavirus is one of the major causes of gastroenteritis in children in Iran that can be easily detectable by ELISA method through which early diagnosis, treatment, and preventive vaccination can dramatically reduce mortality and morbidity rates of the disease.

© 2013 Pediatric Infections Research Center and Shahid Beheshti University of Medical Sciences; Published by Kowsar Corp.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Background

Gastroenteritis means the inflammation of stomach, small and large intestines. Rotavirus is the most common cause of severe gastroenteritis among children worldwide. Severe gastroenteritis results in approximately 800,000 deaths annually by some bacteria (i.e. Staphylococcus aureus (2), Escherichia coli (3), Clostridium difficile, Yersinia enterocolitica, Salmonella, Shigella (4), Campylobacter (5), parasites (such as Giardia, Cryptosporidium) (6), and viruses. Some viruses causing gastroenteritis include Noroviruses, Adenoviruses, Sapoviruses, human Caliciviruses, and Astroviruses (7-9). Serum antibody studies show that likely all children have been infected with Rotavirus at least once in their life by the age of 3.

Rotaviruses are ubiquitous; 95% of children worldwide are infected by the age of 3 to 5. The infection is frequently asymptomatic caused by unusual strains of rotaviruses. The disease is most prevalent between ages 4 and 36 months in children and sometimes occurs severely that requires hospitalization. Rotavirus infection in adults is usually subclinical but occasionally causes more severe clinical picture in parents of children with Rotavirus diarrhea, immune-compromised patients (including those with HIV), old individuals, and travelers to developing countries. In temperate climates, Rotavirus diarrhea occurs predominantly during the fall and winter; in tropical settings and in developing countries, seasonality is less marked.

Rotaviruses are shed in large numbers during episodes of diarrhea, and usually are detectable by antigen enzyme immunoassays (EIA) up to 1 week after infection or for more than 30 days in immune-compromised patients (including those with HIV), old individuals, and travelers to developing countries. The predominant mode of Rotavirus transmission is fecal-oral. Spread of the virus through respiratory secretions, person-to-person contact, or contaminated environmental surfaces has also been speculated because of high rates of infection in the first 3 years of life regardless of sanitary conditions, failure to document fecal-oral transmission in several outbreaks of Rotavirus diarrhea, and dramatic spread of rotavirus over large geographic areas in winter. Animal-to-human transmission does not appear to be common, although human rotavirus strains that possess a high degree of genetic homology with animal strains have been identified (10).

In the world, approximately 400-600 thousand children in poor countries die annually by Rotavirus-associated dehydration. Most of the deaths occur in these countries due to delay in treatment. Despite of low death rates in industrialized countries, good hygiene and sanitation do not appear to reduce the prevalence or prevent the spread of Rotavirus. Rotavirus particles are 65-75 nanometers in diameter, with a double protein shell and 11 unique strands of double-stranded RNA. The majority of Rotaviruses known to infect humans and animals share a common-group antigen and are termed group A Rotaviruses (11). Rotavirus gastroenteritis is manifested by some main symptoms such as abdominal pain, fever, diarrhea, lethargy, and vomiting that may lead to hypovolemic shock and dehydration (12). Diarrhea is the second most common cause of childhood mortality worldwide, estimated to be responsible for 1.76 million deaths annually between 2000 and 2003 and 1.87 million deaths in children under the age of 5 years in 2004 (13-15). Rotavirus can infect all children by the age of five regardless of socioeconomic status or environmental conditions (16). The world health organization (WHO) estimates that 527,000 childhood deaths are caused by Rotavirus disease each year (17). In developing countries, Rotavirus is the most common cause of childhood mortality due to severe diarrhea (18). Rotaviruses are the most common agents associated with benign seizures (19). A study in Iran reported 59.1% Rotavirus-positive cases among children with acute gastroenteritis (20). The most dominant virus, group A, causes diarrheal diseases worldwide.

2. Objectives

This study was aimed to determine the prevalence of Rotavirus gastroenteritis in children under five years old with acute gastroenteritis using ELISA, a cheap and fast method, on 2988 samples, for detection of the virus by age, sex, and situation in 5 cities of Iran (21).

3. Materials and Methods

Stool specimens (n = 2988) were collected from patients under five years old with acute diarrhea hospitalized in Tehran, Shiraz, Tabriz, Bandar Abbas, and Mashhad, and referred to pediatric infection research center (PIRC) of Mofid children’s hospital in frozen condition during April 2010 to March 2011 and stored at minus 70°C. The cases were identified by reviewing hospital admission records of demographic characteristics and symptoms of patients.

A commercially available ELISA kit (Rotaclone; Meridian Bioscience Inc., Cincinnati, OH) was used to detect group A Rotavirus antigen. (IDEA Rotavirus, Dakocytomation Ltd. Denmark House, Angel Drove, Ely, cambsCB7 4ET, UK, Lot: 212985 kit). Results were read by an ELISA plate reader with the filters set at 450 nm and 620-650 nm. Controls were included each time the kit was run.

4. Results

Fecal specimens from 2988 children below 5 years old with acute diarrhea hospitalized in 5 cities of Iran (Tehran, Shiraz, Tabriz, Bandar Abbas, Mashhad) from April 2010 to March 2011 were examined in PIRC of Mofid children’s hospital, Tehran/Iran to know the prevalence of Rotavirus diarrhea from different locations of Iran using double antibody sandwich ELISA analysis. The prevalence of Rotavirus was the highest in Bandar Abbas (16.77%) and
Shiraz (14.42%), Rotavirus and the least in Tabriz (7.56%). Stool samples were positive for Rotavirus in 55.48% of cases (Figure 1). There was 59.9% of samples from male patients and 40.1% from females. Rotavirus diarrhea was significantly high (P < 0.01) in children between 11 to 20 months (43.28%). Children from families of middle socioeconomic status (69.35%) mostly suffered from the disease (P < 0.001). Peak incidence of rotavirus diarrhea was in winter (41.26%) and showed inverse relation to temperature, humidity, and rainfall. Besides diarrhea, vomiting was a significant clinical manifestation.

In a study performed in Iran, the Rotavirus diarrhea in females less than five years old (18.0%) was higher than that in males (13.7%) of the same age (32) but our study and the other study showed different results with no relationship between Rotavirus infection and sex. Seasonality is obvious for Rotavirus infection so that majority of cases in temperate climates occur in winter months between November and February (33).

In another study performed in Iran, the Rotavirus diarrhea in females less than five years old (18.0%) was higher than that in males (15.7%) of the same age (32) but our study and the other study showed different results with no relationship between Rotavirus infection and sex. Seasonality is obvious for Rotavirus infection so that majority of cases in temperate climates occur in winter months between November and February (33).

A multicenter study in 5 developing countries including Pakistan conducted by WHO CDD program revealed that only 1.8% of cases were presented with severe dehydration and these were mostly due to Rotavirus; in the study all methods detected Rotavirus to varying degrees but ELISA was found to be the most sensitive method with 72.4% stools being positive (34).

In 2005, Rotavirus was detected in 48 patients (10%) in Saudi Arabia using latex agglutination test. ELISA detected 46/48 positive samples. Ten negative samples with latex test were also negative with ELISA. Infection with Rotavirus was more frequent among infants and children < 2 years old, with a maximum incidence among children 0-12 months. The prevalence of Rotavirus infection in Saudi nationals was 3.1% compared to 6.9% in other nationalities (35).

Since the time of study was limited to 1 year, consideration of Rotavirus genotyping to detect the most prevalent genotypes for vaccination is necessary. In near future, continuous and broader surveillances on circular Rotavirus strains are required in Iran. Also, there is a great need for defining the prevalence of Rotavirus-associated disease burden and strain in Iran. We also need to conduct Rotavirus vaccine trials to assess its efficacy and safety in our settings. In addition, our data suggest that rotavirus is an important etiologic agent of gastroenteritis in local pediatric population. More extensive studies are necessary to determine the prevalence of Rotavirus in Iran in order to design effective control measures and protect our population against this pathogen. Agreement with study in 2003 by Phukan AC revealed that 23.27% of patients were affected by Rotavirus. Rotavirus diarrhea was significantly high in children under 2 years old (37.75%) (36).

Acknowledgments

We thank Communicable Disease Center (CDC) of Min-
istry of Health for giving permission to undertake the study and the management, and also staffs of Pediatric Infections Research Center in Mofid Children Hospital for their cooperation and support.

Authors’ Contribution
None declared.

Financial Disclosure
None declared.

Funding/Support
Pediatric Infections Research Center (PIRC) of Mofid Children Hospital and Communicable Disease Center (CDC) of Ministry of Health.

References