
Arch Clin Infect Dis. 2020 April; 15(2):e103232.

Published online 2020 May 10.

doi: 10.5812/archcid.103232.

Review Article

The Role of Artificial Intelligence and Machine Learning Techniques:

Race for COVID-19 Vaccine

Shantani Kannan 1, Kannan Subbaram 2, *, Sheeza Ali 2 and Hemalatha Kannan 3

1Department of Electronics and Communication Engineering, Kumaraguru College of Technology, Coimbatore, India
2School of Medicine, The Maldives National University, Male’, Maldives
3Department of Laboratory Sciences & Pathology, Jimma University, Jimma, Ethiopia

*Corresponding author: School of Medicine, The Maldives National University, Male’, Maldives. Email: kannan.subbaram@mnu.edu.mv

Received 2020 March 30; Accepted 2020 April 17.

Abstract

Context: In the healthcare system, Artificial Intelligence (AI) is emerging as a productive tool. There are instances where AI has
done marvels in the diagnosis of various health conditions and the interpretation of complex medical disorders. Although AI is far
from human intelligence, it can be used as an effective tool to study the SARS-CoV-2 and its capabilities, virulence, and genome. The
progress of the pandemic can be tracked, and the patients can be monitored, thereby speeding up the research for the treatment
of COVID-19. In this review article, we highlighted the importance of AI and Machine learning (ML) techniques that can speed up
the path to the discovery of a possible cure for COVID-19. We also deal with the interactions between viromics and AI, which can
hopefully find a solution to this pandemic.
Evidence Acquisition: A review of different articles was conducted using the following databases: MEDLINE/PubMed, SCOPUS, Web
of Science, ScienceDirect, and Google Scholar for recent studies regarding the use of AI, seeking the spread of different infectious
diseases using relevant MeSH subheadings.
Results: After a thorough screening of different articles, 30 articles were considered, and key information was obtained from them.
Finally, the scope was broadened to obtain more information. Our findings indicated that AI/ML is a promising approach to drug
development.
Conclusions: The field of AI has enormous potential to predict the changes that may take place in the environment. If this tech-
nology is applied to situations of a pandemic such as COVID-19, breakthroughs could potentially pave the way for new vaccines and
antiviral drugs.
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1. Context

Among recent revolutions in technology, Artificial In-
telligence (AI) is one emerging boom that is happening all
over the world. Considering supercomputers, facial recog-
nition, robots in surgery, or automated manufacturing, AI
has taken over the world. This is the reason why AI fu-
turists and economists tend to call AI the “fourth indus-
trial revolution” (1). Although the mortality rate of the
SARS-CoV-2 virus is low, this novel coronavirus (COVID-19)
is one of the most infectious diseases affecting our planet
in the past decades. This virus was first spotted in Wuhan,
China, and has now globally spread to over 190 countries,
infecting more than 400,000 people and more than 15,000
deaths (2, 3). Governments and health organizations of
the world are constantly working day and night to com-
bat the disease, but it has so far proved to be a major hur-

dle. Many scientists are seeking the help of AI. Artificial
intelligence can aid as an effective tool to study the virus
and its capabilities, virulence, and genome. Furthermore,
it can help predict the protein structure of the virus and
its interaction with other chemical compounds. This can
help accelerate the preparation of new antiviral drugs and
vaccines (4). Artificial Intelligence and Machine Learning
(ML) are two giant effective weapons that we have against
this notoriously fast progressive virus. The main aim of
our review was to deal with the interaction between vi-
romics and AI/Deep Learning, which might remarkably
help find a solution to this pandemic. We also offered our
processed data and code after analyzing different articles,
which might be used for diagnostic purposes by doctors,
researchers, scientists, and virologists who are involved
in finding a solution for the SARS-CoV-2 pandemic. This
technology is a promising approach in healthcare and can
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meet the needs of researchers and scientists in antiviral
drugs and vaccine development (5, 6). The main objective
of this article was to emphasize the importance of AI/Deep
learning technologies in the field of healthcare and curb-
ing infectious diseases like COVID-19. Using these tools, re-
searchers can speed up the way of finding a possible cure
to COVID-19.

2. Evidence Acquisition

2.1. Data Sources and Research Strategies

A systematic review was conducted on the following
databases: MEDLINE/PubMed, SCOPUS, Web of Science, Sci-
enceDirect, and Google Scholar for different studies re-
garding AI and ML technologies. We used the follow-
ing combined Medical Subject Headings (MeSH) terms in
Google Scholar, such as “Deep Learning”, “Spike Glycopro-
teins”, “Artificial Intelligence”, “Algorithms”, etc. Finally,
the articles were deeply studied, of which key, in-depth
information was obtained. The same search process was
adopted for other databases.

2.2. Eligibility Criteria

Articles were included on the following basis: (a) ma-
jorly published in the English language between 2013 and
2020; (b) accounts of successful trials and experimenta-
tions with various AI/Deep Learning technologies such as
Tensorflow, Keras, and Python tools; (c) recent WHO and
CDC reports of COVID-19; (d) Viral genomic studies; and (e)
original and peer-reviewed articles.

The articles were excluded on the following basis: (a)
insufficient or no data and (b) articles that did not have a
proper study or design approach.

2.3. Tools Employed

NCBI Genome WorkBench was used for processing the
sequences, and ClustalX (version 2.1) was used for the
alignment of the sequences. NCBI Tree Viewer was used
for visualization of the phylogenetic tree. Additionally,
python tools were employed in Jupyter Notebook (version
to explore the spike glycoprotein structures of betacoro-
naviruses obtained from different hosts such as bats (Chi-
roptera), human (Homo sapiens) around the world, rab-
bits (Oryctolagus cuniculus), brown rats (Rattus norvegicus),
and many other possible potential hosts for SARS-Cov-2 up-
dated in NCBI till date. BioPython (version 1.76) was used
for importing modules. We used PyMol software for the
molecular visualization of the SARS-CoV-2 spike glycopro-
tein structure.

3. Results

3.1. Artificial Intelligence to Spot Patterns and Changes

The primary way to monitor the spread of infectious
diseases is to look for “signs” or “signals”. Artificial intelli-
gence can see these signals in data earlier than humans. In
late December of 2019, Li Wenliang warned his fellow col-
leagues and officials in Wuhan, China, about an upcoming
possible SARS-like epidemic that shook the nation in the
early 2000s before tragically succumbing to the disease (7).
Simultaneously, a computer as AI server named BlueDot
also alerted systems regarding an emerging risk of COVID-
19 in Hubei province, China. This is not the first kind of dis-
ease that this software has alerted about. It has previously
detected the outbreaks of 150 different pathogens, includ-
ing SARS, Zika, Hepatitis A, Measles, etc. (8, 9). Many biotech
companies are relying on AI to speed up the way to cure
COVID-19. The hope is that it can spot patterns and changes
and provide a promising approach for vaccine develop-
ment. As coronaviruses such as SARS-CoV-2 have tenden-
cies to mutate or even become drug-resistant, the drug de-
veloped should be effective for all forms (Broad Spectrum).
Many drug companies such as Insilico Medicine Inc., Iktos,
Vir Biotechnology Inc., Moderna Therapeutics, and Atom-
wise are utilizing AI technologies to develop a cure for this
disease. Studies estimate that it will probably still take a
year or more for the drug to be completely, successfully de-
veloped, and introduced to the market. However, in the
case of AI, if the tendency of the potential virus is identified
easily, the drug development can be achieved at a faster
rate (10). Using informative techniques such as AI Neural
Networks, Convolutional Neural Networks, Deep Genera-
tive Neural Networks, etc., initial potential molecular com-
pounds and viral strains from different places around the
world can be analyzed. Although its impact may seem rel-
atively limited at first, this technology has great potential
in the field of drug discovery and development (11).

3.2. Viral Host Prediction with Deep Learning

Zoonotic diseases, which involve animal to human
transmission of infectious diseases, are current global
problems. It could be understood from the recent prob-
lem of COVID-19 that wreaked havoc on the world. The first
outbreak of SARS-CoV-2 in China can be traced back to Hua-
nan Seafood Market in Wuhan. It is a wet market mean-
ing that meat is sold alongside wild, exotic animals such
as civets, bats, pangolins, etc. There could be numerous
cases of possible transmission between these animals, ei-
ther dead/ alive/vectors to humans. In such cases, it is diffi-
cult to determine the actual host of the virus -the host may
be particularly adapted- and possible origin of the virus
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(12, 13). To overcome this situation, viral genome struc-
tures obtained from different animals, possibly hosting be-
tacoronaviruses such as SARS-CoV-2, are obtained and can
be trained with deep neural networks. Various computa-
tional techniques that can analyze the DNA and RNA se-
quences of the virus have been developed. Different archi-
tectures have been developed to train neural networks by
continuously feeding data (14). Some of the ANN (Artificial
Neural Network) based viral host prediction approaches
are listed below.

l Truncated Back Propagation Through Time (TBPTT)
Algorithm: A viral sequence is processed one timestep at
a time (k1 timesteps). It minimizes error for the expected
output with a given input (Figure 1).

l Recurrent Neural Networks (RNNs): RNNs can be re-
peatedly trained to predict viral host traits. By using this
method, we can obtain the nearest neighbors and neural
networks can be built (Figure 2).

l Convolutional Neural Networks (CNNs): The predic-
tion of virus mutation can be studied using CNNs. This
can be used to analyze the course of an outbreak. The be-
low image depicts the forecasting of the dynamics of an
influenza-like illness. This same process can be applied to
SARS-CoV-2 (15-18) (Figure 3).

3.3. Detecting COVID-19 in X-Ray Images with AI Tools

It is possible to detect COVID-19 in X-Ray images of pa-
tients using AI tools such as Tensorflow and Keras. Al-
though this method is not a reliable, accurate medical di-
agnostic method, it still shows how knowledge from com-
puter vision/deep learning can make a big impact on the
world of healthcare using AI tools. We just need to obtain
the X-ray dataset of patients who have been tested positive
for COVID-19. It can be obtained from various open sources.
This is followed by sampling of “normal” patients. Finally,
a CNN should be trained to detect COVID-19 from the sam-
pled X-Ray images. The below figure shows the dataset of
X-Rays of COVID-19 positive and COVID-19 negative patients.
These can be trained by neural networks to automatically
detect the presence of COVID-19 (19, 20) (Figure 4).

3.4. Exploring SARS-CoV-2 Spike Glycoprotein with Python Tools

Since the discovery of COVID-19, there have been var-
ious controversies and debates on its possible origin.
The genome of SARS-CoV-2 consists of single, positive-
stranded RNA, which is roughly 30K nucleotides long. The
genome structure has similarity to other coronaviruses,
more specifically the betacoronaviruses. The particular
characteristic that makes it similar to other betacoron-
aviruses is the spike glycoprotein structure. It facilitates

the entry of the virus into the cells. In this process, we are
going to explore the genome of SARS-CoV-2 from different
hosts (21).

3.4.1. Importing Modules

The following modules were imported from BioPython
(version 1.76) (22) (Figure 5).

3.4.2. Obtaining Sequences from NCBI

NCBI virus database was used to download the be-
tacoronavirus sequences. The csv and fasta files for the
viruses were downloaded. By using the accession number
or host, we accessed the subsets (23) (Figure 6).

3.4.3. Getting Subsets of the Sequence

The subsets were obtained after accessing the SARS-
CoV-2 betacoronaviruses. It was listed with the species, the
host, and the date of collection (24) (Figure 7).

3.4.4. Aligning the Given Sequences

For aligning multiple sequences of betacoronaviruses,
we used NCBI Genome Workbench (Multiple Sequence
Alignment Viewer) and ClustalX (version 2.1). We can see
the Receptor Binding Domain (RBD) and Polybasic Cleav-
age Site by scrolling across the sequence (25, 26) (Figure 8).

3.4.5. Phylogenetic Tree

We can view the phylogenetic tree using the NCBI Tree
Viewer (27) (Figure 9).

3.4.6. Viewing the Structure of Novel Coronavirus Spike
Receptor-Binding Domain Complexed with Its Receptor ACE2

For this process, we obtained the SWISS MODELS from
Protein Data Bank (PDB). The model chosen was the struc-
ture of novel coronavirus spike receptor-binding domain
complexed with its receptor ACE2. The structures were
downloaded in PDB formats and processed in PyMol envi-
ronment. By using this tool, we visualized and explored the
molecular structure of SARS-CoV-2 spike glycoprotein (28-
32) (Figure 10).

4. Discussion

4.1. Current Scenario in the Use of AI/ML Technologies in Vaccine
Development for COVID-19

In the present circumstances, AI technologies are not
widely employed by all researchers during vaccine and
drug development. Only fewer machine learning models
have been implemented for the spread of coronavirus. AI
can forecast the rate in which an infection spreads in a
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Figure 1. TBPTT Algorithm (courtesy: Mr. Florian Mock-VIDHOP, A viral host predicting tool)

Figure 2. Recurrent Neural Networks (courtesy: Frontiers in Genetics)

particular region. This data can be further processed to
help provide health officials the situation of a particular
pandemic, thereby aiding the coronavirus response. How-
ever, there are many barriers involved such as availability
of datasets, limited trained professionals, and resources.
In AI and ML, every model is trained so that the solution
to the problem is achieved. This is the basis of AI/ML-based
researchers and scientists. We believe that this field could
have an enormous impact on the current highly accelerat-

ing pandemic, COVID-19, that is taking over the world (33-
37).

4.2. Applications of Artificial Intelligence and Accounts of Suc-
cessful Trials

l Deep Learning-Based Drug Screening for Novel Coron-
avirus: This method was created by researchers in China us-
ing DenseNet to predict the interactions between proteins
and ligands. This helps predict which drug combinations
work preferably well in response to the virus (38-40).
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Figure 3. Convolutional Neural Networks (courtesy: Semantic Scholar)

Figure 4. X-Ray dataset samples of COVID-affected and non-affected patients (courtesy: Pylmage)

l Predicting Antiviral Drugs that are Available Com-
mercially to Control COVID-19: Here, a specific method
called Molecule Transformer Drug Target (MT-DTI) is used
(41).

l DeepMind and AlphaFold: DeepMind uses the Al-
phaFold library to predict the protein structures of COVID-
19 (42, 43).
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Figure 5. Importing modules

Figure 6. Obtaining sequences

Figure 7. Obtaining subsets

l Prediction of Critically Ill Patients in Wuhan Using
ML Models: Artificial Intelligence scientists in Wuhan de-
veloped this method to identify the intensity of infections
with factors such as age, gender, etc.

l Data based screening and Kalman filters for analysis
of data.

l Further predictions of infection in a particular region
(44-46).

4.3. Conclusions

Artificial Intelligence and Machine Learning is still sub-
ject to many criticisms, and many people are questioning
its capacity to solve real-world problems. In other words,
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Figure 8. Alignment using Clustal

Figure 9. Phylogenetic Tree

it is still an underutilized area in healthcare systems that
needs to be developed to benefit millions of people. The
main reason is that people prefer to handle every situation
in a manual way. For instance, a hospital will prefer to han-
dle its X-Ray or CT data in a manual way by doctors rather
than train a model using CNNs to analyze the data. But if
this technology is used to the maximum, it has the poten-
tial to create a revolution in the field of vaccine and drug
development and benefit the whole of mankind.
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Figure 10. Spike glycoprotein structure of SARS-CoV-2
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