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Abstract

Context: Some recent reports have indicated that almost 80% of clinical infections in humans have biofilm origin and impose
additional healthcare costs. This study was an updated review of extracellular polymeric substance matrix (biofilm) formation in
humans and elaborated on its clinical significance, diagnosis, and therapeutic approaches.
Evidence Acquisition: This narrative study reviewed the most recent information on the significance of microbial biofilm forma-
tion in clinical settings, common biofilm-producing bacterial species, its diagnosis, antibiotic drug resistance, and new approaches
to the treatment of infections associated with biofilm formation.
Results: Evidence indicated a permanent increase in the frequency of microbial biofilm in the central venous catheter, mechanical
heart valve, and urinary catheter, as well as persistent infections. However, antimicrobial resistance induced by biofilms formation
and the antimicrobial treatment of biofilms were problematic. Moreover, several assays and lab devices were described to evaluate
biofilm formation. Furthermore, new attitudes towards anti-biofilm treatments were introduced in this paper.
Conclusions: The number of different mechanisms were in accordance with the recent knowledge on how biofilms play a criti-
cal role in the disease pathogenesis. Biofilm strikes the treatment and surveillance of patients bearing infectious diseases under
different conditions. The use of new methods in anti-biofilm treatments is effective for the recovery of infected patients.
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1. Context

Biofilms mainly comprise microbial cells and ex-
opolysaccharides (EPS) (1) and connect to abiotic surfaces.
The adhesion step is essential for the bacteria arranged
in their environmentally favorable conditions (2). Bacte-
rial growth is characterized by planktonic or sessile aggre-
gates. Sessile aggregates are commonly referred to as a
biofilm and contain multiple bacteria forming a consor-
tium (3). Figure 1 shows the stages involved in the forma-
tion and life cycle of a biofilm. A biofilm acts as a protection
factor for the bacteria against antimicrobial and host im-
mune system attacks and favors infection chronicity. Quo-
rum sensing (QS) systems is a cellular recognition mech-
anism which regulate biofilm formation. Since biofilm
formation can pose remarkable problems in the Health
settingby, stimulating further resistance to the treatment
with antibiotics and biocides, it even decreases host im-
mune responses (4).

The pathophysiology of biofilms is involved in the bac-
teria colonization process and disseminative stages. In the
disseminative stages and colonization processes, the bac-
teria emerge in a planktonic form; however, the biofilm
formation steps are determined by cellular accumulations
in a distinguished form and physiology (6).

Microbial biofilms are normally out of access to
antibiotics and the human immune system. Biofilm-
producing bacteria present resistant phenotypes due to
some changes e.g., nutritional status or cell density, tem-
perature, osmolarity, and pH) (7).

According to the statistics, about 80% of clinical in-
fections in human are associated with biofilms. Due to
the effect of microbial biofilms on the care and treatment
strategies, millions of dollars have been spent in ambi-
guity for a long term. A biofilm is quickly produced on
stainless steel and titanium orthopedic bolts and encom-
passes powerful adhesion forces to stick to foreign bodies
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Figure 1. Adhesion step and sessile aggregation of a biofilm (5)

by some bacteria such as Staphylococcus aureus, S. epider-
midis, and Pseudomonas aeruginosa (8, 9). Some diseases
induced by biofilm formation are pneumonia, skin infec-
tions, food poisoning, endocarditis, osteomyelitis, soft tis-
sue infections, septic arthritis, cystic fibrosis, periodonti-
tis, and UTI, which are mainly caused by indwell medi-
cal devices and life-threatening invasions (10-19). In some
microorganisms, cell-cell signaling during sporulation ex-
hibits different cellular forms containing distinguished
cell types, thereby enhancing survival via the labor divi-
sion (20). There are some medically-significant fungi pro-
ducing biofilms such as Candida, Pneumocystis, Aspergillus,
Trichosporon, Coccidioides, and Cryptococcus (21). Unfortu-
nately, recent reports have described a worldwide increase
in the prevalence of these organisms as well as high mor-
tality and morbidity rates in healthcare settings as such,
they have been a major concern worldwide. To make ap-
propriate policies, national information is required to re-
vise the essential drugs’ list for treatment and evaluate
the effects of intervention strategies (22). Biofilm forma-
tion as a virulence determinant may result in the develop-
ment of multi-drug resistance. For example, Acinetobacter
is the leading cause of hospital-acquired infections world-
wide. In this regard, there are some reasons as follows: (1)
tendency to create someinfections in critically-ill patients;
(2) predilection to develop resistance to multiple antibi-
otics; and (3) survivability for a long term on equipment
and hospital surfaces, and several outbreaks attributed to

common source contamination. Moreover, the MDR, XDR,
and PDR (representing multi-, extensive- and pan-drug re-
sistant) strains of A. baumannii have been reported world-
wide (23-25).

There is an urgent need to study factors in charge of
spreading antibiotic resistance and gene transfer. Some
genes associated with biofilm formation result in treat-
ment failure among wound infections due to the involve-
ment of some highly resistant bacteria (26). Wound infec-
tion in burned patients should be demonstrated as a po-
tential risk due to antibiotic-resistant bacteria such as P.
aeruginosa, Acinetobacter, and Klebsiella (4).

Moreover, in burn centers, the rapid acquisition of
MDR result in high morbidity and mortality rates. Af-
ter exposure to various antibiotics and cross-resistance
may emerge some resistant strains such as MDR, XDR, and
PDR. Consequently, given the rapid emergence of hospi-
tal antibiotic-resistant pathogens, the periodic assessment
of antibiogram sensitivity and bacterial colonization pat-
terns in burn wards seems crucial (27).

During the last decade, the significance of biofilms
in clinical settings was documented. Infections induced
by biofilms are observed in all parts of human body.
Now, biofilm-forming bacteria seem to be associated with
chronic infections (28).

Accordingly, this study described an updated review of
biofilm matrix formation in human regarding its clinical
significance, diagnosis techniques, and therapeutic drugs.
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2. Evidence Acquisition

In this narrative review, a comprehensive review of the
relevant literature further revealed structural and func-
tional variations. Moreover, it was noticed that biofilms
play a role in disease and host-pathogen interactions. The
present study describes the most recent information on
the significance of microbial biofilm formation in clini-
cal settings, common biofilm producing bacteria, antibi-
otic drug resistance, its diagnostic methods, and new ap-
proaches to the treatment of infection induced by biofilm
formation.

3. Results

3.1. Significance of Biofilms in Clinical Settings

According to a comprehensive review of the literature,
about 99.9% of bacteria produce biofilms at biological and
inanimate levels. Biofilm producing has been reported in
a large number of Gram-positive (S. epidermidis, S. aureus,
Actinomyces israelii) and Gram-negative (E. coli, Klebsiella
pneumonia, Enterobacter cloacae, Pseudomonas aeruginosa,
Burkholderia cepacia, Haemophilus influenza, and A. bauman-
nii) bacteria (29-32).

Some infections are associated with residing prosthe-
sis and implantable devices. Tables 1 and 2 present the list
of human infections induced by indwelling devices and
those involving biofilms (33, 34). Table 3 also presents hu-
man infections induced by indwelling devices, and Table 4
shows human infections caused by biofilm-producing bac-
teria. A list of some medical devices by which biofilms can
develop is presented in Table 5. Some medical devices, by
which biofilms can develop, are as follows: (1) prosthetic
joint; (2) endotracheal tubes; (3) tympanostomy tubes; (4)
peritoneal dialysis catheters; (5) voice prostheses; (6) pace-
makers; (7) urinary catheters; (8) contact lenses; (9) me-
chanical heart valves; (10) central venous catheters; (11) in-
trauterine devices; and (12) central venous catheter need-
less connectors (35).

Biofilms associated with central venous catheters
(CVC) are used to provide fluid, blood products, nutrition
or medications, and access to the dialysis treatment (7,
35). However, the contamination of the external or inter-
nal parts of the catheter leads to biofilm formation. After
the first week of catheterization, extra luminal biofilm can
cause catheter-associated bloodstream infections. Con-
versely, some evidence from luminal colonization and
biofilm formation is obtained after indwelling vascular
catheters for more than 30 days. Accordingly, patients re-
quiring the long-term use of devices (e.g., patients with
bone marrow transplantation) are at greater risk of devel-
oping blood infections (37, 38).

Biofilms can stick to the material of mechanical heart
valves and heart surrounding tissues, inducing a disease
called prosthetic endocarditis. In this regard, some of
the main bacteria associated with this disease are Gram-
negative bacilli, diphtheroids, Candida spp., S. epidermidis,
S. aureus, Streptococcus spp., and enterococcus spp. These or-
ganisms may appear because of using devices such as CVC
or following dental procedures (7).

The nature of causative agents is associated with their
origin. Some contamination-arousing organisms (e.g.,
early endocarditis induced by S. epidermidis) originate at
the surgery time. Some organisms (e.g., Streptococcus spp.)
emanate after dental work. Because of indwelling a med-
ical device, several organisms may exhibit infections. Af-
ter residing the mechanical heart valve, there may be some
events such as the accumulation of circulating platelets,
fibrin attachment to the valve, and tissue damage. Simi-
larly, the bacteria’s greater tendency to attach to these loca-
tions is documented. Moreover, biofilms reach the tissue
around the prosthesis or can stick to the synthetic med-
ical devices. Generally, antimicrobial drugs are adminis-
tered after the valve replacement and dental procedures
to prevent early sticking by killing all bacteria spread into
the bloodstream. According to some studies, only a small
number of patients can be released from an infection in-
duced by biofilm only by adopting antibiotic treatment (31,
32, 37).

Catheters are commonly necessary for patients not ca-
pable of voiding. A urinary catheter is a hollow, construc-
tion rubber or plastic (PVC) silicone, flexible tube in sev-
eral sizes and types, which gathers urine from the bladder
and propels it to a drainage bag. The disruption in empty-
ing the bladder can pose pressure on kidneys. Kidney dys-
function occurs following such pressure, which can be haz-
ardous and causes kidneys’ persistent damage. Catheters
are often used for a short period of time; however, the el-
derly and patients with a persistent injury or drastic illness
may need catheters for a long time (38). A catheter-induced
infection was increased by about 10% per day of using the
catheter. Both the internal and external surfaces of uri-
nary catheters can be readily expanded by biofilms colo-
nization, and this condition cannot be deviated merely via
hygiene scale. Hence, clinicians should prescribe catheters
only in the case of necessity and forbear catheterization
for a prolonged or continuous period (7). The contami-
nation may be aroused by those bacteria colonized in the
periurethral region. They can move into the bladder via
the mucosal lining that is within the epithelial cells or the
urethra region and the catheter. Urine contamination may
happen in the catheter drainage bag and induce infections
in that patient. IN this regard, the most frequent strat-
egy is the catheter elimination and substitution. Catheter
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Table 1. General Aspect of Clinical Signs of Infection and Microbiological Diagnostics of Infections Induced by Biofilms (29)

Variables Values

General aspect of clinical signs (In some cases) low-grade fever, loss of function, dolor, low-grade inflammatory reactions tumor, and rubor;
Implanted medical device and cystic fibrosis (CF) disease as the medical history of biofilm-predisposing
situations; All persistent and lasting (> 7 days) infections, antibiotic resistance during treatment; Infection
relapse and antibiotic treatment defeat; Documented record /antibiotic defeat background; All systemic
signs and infection symptoms resolve with antibiotic therapy.

Microbiological diagnostics A- Microscopic evidence of tissue/ fluid samples gathered from suspected infection location; Microscopic
evidence disclosing microbial aggregates by the examination of fluid sample or smear; Microscopic evidence
Microscopic evidence disclose microbial co-localized together with inflammatory cells; Microbiological
document confirm with infectious etiology

B- Microbial microorganisms indicated by a few
procedures (e.g., positive
culture/non-culture-based (PCR) of tissue or liquid
example)

Microbial pathogens detected by culture (MALDI-TOF); Mucoid settlements or variations of Pseudomonas
aeruginosa small colony in culture-positive examples, indicating anti-infection disobedience; Positive
outcomes detected by a few molecular techniques (e.g., PCR, quantitative PCR, or multiplex PCR for microbes
related to contamination with P. aeruginosa and CF, Staphylococcus aureus related to contamination with
implant); The positive outcome of fluorescence in situ hybridization for well-known pathogens displaying
snuggled microorganisms; Microbial pathogen detected by several non-culture-based techniques such as
next-generation sequencing, pyrosequencing, specific immune reaction to known bacteria such as P.
aeruginosa antigens in patients with CF (if infections induced by biofilm last for about 2 weeks.)

Table 2. Common Anatomic Site of Human and Foreign Bodies for Biofilm Coloniza-
tion (29)

Anatomic site A with normal flora Anatomic site B without normal
flora

Skin; Pharynx; Duodenum;
Urethra; Vagina; Air in operating
room, skin flora

Blood, peritoneum; Bronchi, lungs;
Bile tract, pancreas; Bladder; Uterus;
Neurosurgical shunt, alloplastic
material

No symptoms Pathology

Table 3. Human Infections Induced by Indwelling Devices (33)

Device Infection

Peritoneal dialysis catheters Exit-sit-infections, peritonitis

Hemodialysis catheters Access site infections, endocarditis,
bacteremia

Urinary catheters Urinary tract infections, bacteremia

Intravenous catheters Access site infections, bacteremia

Prosthetic cardiac valves Prosthetic valve endocarditis, bacteremia

CSF shunts and reservoirs Access site infection, meningitis

Cardiac pacemakers Lead and generator infections,
endocarditis

Contact lenses Conjunctivitis, endophthalmitis

Surgical sutures & staples Urinary tract infections

disruption and displacement can pose further complica-
tions; hence, biofilm can sheds planktonic cells or aggre-
gates of cells after indwelling device and provides bacterial
spread to other anatomical places in body. It is proved that
urease production by some bacteria increases the urinary
pH and promotes crystalline biofilm formation in the uri-
nary catheter. Sometimes, crystalline biofilms appear on
the catheter’s external surface (e.g., catheter tip and sur-
rounding balloon), causing trauma to the urethral epithe-
lia and bladder. Then, because of stone formation, biofilm
debris can cause obstruction in the bladder. Furthermore,
the crystalline biofilm can cause catheter lumen obstruc-
tion and urine flow obstruction by the catheter (33).

Recurrent UTIs are popular among young, healthy
women, even those whose urinary tracts have a normal
structure anatomically and physiologically. One of the sub-
stantial burdens to the healthcare system is that almost
25% of women with acute cystitis experience recurrent
UTIs. In this regard, some studies have highlighted the sig-
nificance of detecting the main factors causing recurrent
UTIs to expand effective prevention methods and therapies
(39). Relapse induced by uropathogenic E. coli (UPEC) is as-
sociated with these strains’ potentials for biofilm forma-
tion. As a result, biofilm formation is the main feature of
the UPEC persistence not only in the vaginal reservoir but
also in the bladder epithelial cells (39-44).

3.2. Antibiotic Drug Resistance

Compared to planktonic cells, biofilm-producing bac-
teria adopting several mechanisms can be more resistant
against antibiotics as much as 1000 times (45-48). Some
of the mechanisms are as follow: (1) antibiotic diffusion is
limited via the matrix: for example, aminoglycosides pen-
etrate via the matrix more slowly compard to β-lactams
drugs; (2) resistance genes transmit across the commu-
nity: Mobile genetic elements such as plasmids, transmits
between cells by close contact, leading to spreading re-
sistance markers; (3) the expression of efflux pumps is a
drug resistance mechanism both in planktonic cells and in
biofilm-producing bacteria; (4) antibiotics are inactivated
by some changes in pH and metal ion concentrations. Each
pH change in biofilms can inactivate antibiotics by the an-
tibiotic activity anatomization; (5) metabolically, inactive
cells denominate the persister cells. Persister cells are reg-
ular and dormant variants, which are not mutants. They
act as a surviving cell reservoir for rebuilding the biofilm
population (49). The acquisition of such a persisted sta-
tus is mediated by toxin-antitoxin modules (50). The resis-
tance level is associated with the biofilm formation stage.
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Table 4. Human Infections Involving Biofilm Producing Bacteria (34)

Infection Common Biofilm-Producing Bacteria

Musculoskeletal infections, acidogenic enzymes of dental caries plaque Gram-positive cocci (e.g., Streptococcus)

Serious gum infection (periodontitis) Oral anaerobic bacilli (Gram-negative)

Inflammatory diseases of middle ear or otitis media (OM) Haemophilus influenzae (nontypable strains)

Necrotizing fasciitis (NF) Group A streptococci

ICU pneumonia, biliary tract infection, urinary catheter cystitis, bacterial prostatitis Enterobacteriaceae

Endocarditis of native valve VGS (viridans group streptococci)

Cystic fibrosis (CF), meloidosis Pseudomonadaceae

Scleral buckles, vascular grafts Cocci (especially Gram-positive)

Ocular prosthetic devices, such as contact lens Cocci (especially Gram-positive), and Pseudomonas aeruginosa

Continuous ambulatory peritoneal dialysis, osteomyelitis, endotracheal tubes, peritonitis Wide assortment of microbes, fungi

IUDs Actinomyces israelii and wide assortment of microbes

Hickman line, central venous catheters (CVC) Staphylococcus epidermidis, Candida albicans, and others

Bile duct stent Enterobacteriaceae, fungi

Table 5. Methods and Application Procedures (36)

Method Application Objectives

Roll plate Identification of extra-luminal biofilm Bacterial growth related to biofilm

Plate counting, Sonication, vortex and Identification of intra-luminal, and extra-luminal biofilm Bacterial growth related to biofilm

Staining by acridine orange Identification of extra-luminal biofilm Direct investigation microscopy of biofilm on catheter

Streak plating Biofilm examination delivered on an inhabiting catheter Bacterial growth related to biofilm

When bacteria have not connected themselves in the ma-
trix, they become vulnerable against the actions of host im-
mune system and antibiotics (51). In general, biofilm for-
mation is accompanied by further resistance against host
immune responses and antibiotics (52). The cells’ char-
acteristics in the matrix are protected from being exhib-
ited to the innate immune system in antimicrobial ther-
apy; hence, the communication of biochemical signals be-
tween them is facilitated (53). Moreover, it was demon-
strated that the bacteria resistance in biofilm against the
large number of antibiotics can be related to culture phys-
iological conditions and density, not to their existence in
the biofilm. On the other hand, the distribution of viru-
lence factors and resistance characters can be enhanced
by their construction (54). It was proved that biofilm for-
mation raised the potentials of S. aureus against antibi-
otic resistance caused by plasmid by means of both mo-
bile genetic elements, namely mobilization, and conjuga-
tion. This could be facilitated by close cell-to-cell contact in
biofilms and may be prospered by the biofilm matrix (55).

3.3. Diagnosis: Assays and Lab Devices of Biofilm Formation
Evaluation

In laboratories, microdilution and broth macrodilu-
tion methods are routinely used for detecting the antimi-
crobial activity of agents against planktonic microorgan-
isms. The methods are introduced by National Committee

for Clinical Laboratory Standards (NCCLS), European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST),
and Clinical Laboratory Standards Institute (CLSI). They,
however, have never yield accurate results in biofilm pro-
ducer microorganisms (2). There are several methods to
detect microbial biofilm in response to agents (Tables 6 -
8). Moreover, several devices, including disk reactor, per-
fused biofilm fermenter, model bladder, Centers for Dis-
ease Control (CDC) biofilm reactor, Calgary biofilm device,
and modified Robbins device, have been improved as the
model system. Providing information about biofilm mech-
anisms, these model systems define antimicrobial drugs
susceptibility against biofilm-producing bacteria (36).

3.4. Therapeutic Approaches

Infection treatment associated with biofilm establish-
ment requires further studies because of observing high
levels of antibiotic resistance induced by biofilm struc-
tures. The concerned treatment is usually a mixed ther-
apy, especially for infections induced by biofilm with
macrolides such as clarithromycin, erythromycin, and
azithromycin. These drugs display a wide range of anti-
biofilm activities against infections because of the biofilm
occurred by Gram-negative bacteria and prevent the pro-
duction of alginate as a key matrix component (43).

It is documented that macrolides are effective against
biofilms due to Staphylococcus spp. and P. aeruginosa

Arch Clin Infect Dis. 2021; 16(3):e107919. 5
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Table 6. Detection Methods Utilized for Biofilm Formation Which Created on Clinical Devices (36)

Method Aim

TM Tube method: A qualitative method monitoring biofilm formation lined on tube walls and bottom.

CRA Congo red agar: A qualitative method monitoring the color change of colony.

MtP Microtiter plate: A quantitative method using micro ELISA or microplate reader.

PCR (including real-time, conventional, and multiplex) Identification of biofilm-producing genes

Table 7. Biofilm Identification Methods (36)

Method Application Objective

MtP Microtiter plate: Biofilm produced on wells’ walls in
response to agent

Agent measurement effects on biofilm production

MBEC Minimum biofilm eradication concentration:
Biofilm detection created on wells’ walls in response
to agent and identifying agents MBEC

Agent measurement effects on the production of
mature biofilms on wells’ walls

Vortex accompanied with plate counting Plate counting of bacterial growth induced by
biofilms and detecting MBEC agents

Screening antimicrobial agents’ activity against
bacterial growth induced by biofilms

Checkerboard assay Plate counting of bacterial growth induced by
biofilms and calculating FIC indices

Antimicrobial activity screening of a combination of
agents

Sonication accompany with vortex, and plate
counting

Detecting biofilm produced on wells’ walls in
response to agent and identifying MBEC agents

Screening the activity of antimicrobial agents
against bacterial growth induced by biofilm

Quantitative PCR Measuring specific biofilm gene expression Gene expression induced by biofilm and monitoring
expression in response to agents

MS Mass spectrometry: Located exoenzymes
measurement in biofilm matrix

Bacterial protein monitoring expression in response
to agents

Table 8. Screening Methods for Agents’ Activity Against Biofilm-Producing Bacteria

Devices Substratum Type of Culture Screening Counting Method

Modified Robbins Silastic disks Batch Viable (36)

Disk reactor Teflon coupons Batch Viable or direct, after sonicating, vortexing, and
homogenizing coupons (36)

Calgary biofilm Plastic polycarbonate pegs Batch Viable, after sonicating of pegs (36)

Flow cell Chambers with transparent
surfaces

Continuous Confocal laser scanning microscopy (36)

Perfused biofilm fermenter Cellulose-acetate filters Continuous Viable, after shaking filters in sterile distilled water (36)

CDC biofilm reactor Plastic connectors Continuous Growth medium continuous flow for biofilm formation of
glass coupons by sonicating coupons individually (36)

Model bladder Urinary catheters Continuous Direct examination by chemical analysis or SEM or TEM (36).

Nuclease-based fluorescence - - Some indirect detection methods for example end-point
staining methods by crystal violet in microtiter well plates or
tubes to screen attached bacteria on extracellular
polysaccharides target surfaces (56)

Fluorescence-based
real-time screening

- - Direct investigation of new antibiofilm agents/surfaces in a
continuous mode against biofilms (57)

(58). Moreover; it is proved that the utilization of clar-
ithromycin together with vancomycin is effective in erad-
icating both planktonic cells and biofilm structures (59).
The usage of roxithromycin with imipenem facilitates the
better neutrophils influx into biofilm backbone and un-
fixes the biofilm (60). The use of catheters to coat and im-
pregnate these antimicrobial drugs is another approach to
solve the problems with biofilm production (61). Further,
due to its bactericidal actions, silver has also been used
to coat catheters. Silver encompasses broad-spectrum an-
timicrobial characteristics (62, 63). The variants of the syn-
thetic cationic peptide derived from natural peptides have

been used as a strategy to target biofilms. Recently, some
substances with antibacterial properties (e.g., genuine, ni-
trofurazone, and nitrous oxide) have been used to alter the
urinary catheters’ surface (43, 64).

Biofilm structure eradication is highly complicated
due to the high levels of drug resistance presented by
these constructions. Recent treatments are an alternative
to medication with existing antibiotics to elude not only
biofilm constitution but also resistant bacteria in underly-
ing tissues. Table 9 presents a revision of some recent atti-
tudes towards anti-biofilm treatments.

6 Arch Clin Infect Dis. 2021; 16(3):e107919.



Goudarzi M et al.

Table 9. New Attitudes Towards Effective Biofilm Treatments

Method Function

Catheters covered with antibiotics or
hydrogels

They are hydrophilic polymers making the catheter capable of increasing surface lubrication and consequently
reducing the bacterial adhesion to this surface, thereby playing a role in decreasing the encrustation of catheters; An
increase > 45% in CAUTI is perceived by silver alloy employment in a urinary catheter covered by hydrogel (65, 66); It
is proved that catheters covered with minocycline-rifampicin stop biofilm formation in Gram-negative and
Gram-positive bacteria, Candida spp. and even P. aeruginosa (67)

Antibiofilm treatments by nanoparticles These particles can stick and penetrate into bacterial cells, damage the bacterial membrane, and act with
chromosomal DNA(68); Biofilm formation blockage in E. coli and S. aureus strains by glass surfaces coating with MgF
nanoparticles is observed. Yttrium fluoride (YF3) nanoparticles have low solubility, extended protection, and low
cytotoxicity (69); CaO-NPs (microwave irradiated CaO nanoparticles) have the potential to inhibit the biofilm
production of Gram-negative and Gram-positive bacteria (70); Silver nanoparticles are applied for coating medical
devices because of the silver antibacterial attributes. These nanoparticles, as part of biosensors, have been used in
medical and pharmaceutical nano-engineering for diagnostic approaches, transfer, and therapeutic agents (71).

Iontophoresis Iontophoresis, a physical process in a medium where ions stream diffusively, applies as an experimental, diagnostic,
and therapeutic method. It uses voltage gradients as a kind of transdermal drug delivery procedure. It was proved
that low electrical currents increase he tactivity of tobramycin and biocides against biofilm producing P. aeruginosa
(72); Iontophoresis inhibit biofilm formation. Electric current use to these catheters covered by silver electrodes
remarkably decreased their formation (73, 74).

Biofilm-degrading enzyme A new antibiofilm urease induced by P. mirabilis convert change urea to ammonium ions; fluorofamide can prohibit
the enhancement in pH by Proteus mirabilis, thereby preventing the urea crystal formation and the subsequent
encrustation and catheter blockage; vanillic acid (75), natural plum juice, and germa-γ-lactones (76) can forcefully
prevent bacterial growth of crystal formation in catheters by inhibiting urease enzymes; DspB, an enzyme pertaining
to the bacteriophage and extracted from Actinobacillus species, ruin a crucial adhesion essential for biofilm
production in E. coli and Staphylococcus (77); c-di-GMP is the second messenger significantly conserved among
bacteria. It decreases biofilm production by reducing c-di-GMP inside cells (78).

Antagonism among different bacteria Antagonism can cause with using different E. coli avirulent strains (79, 80) such as E. coli, HU2117 strain originated
from E. coli 83972. Avirulent strains can colonize persistently without any symptomatic infection (81); hence, it has
been applied for urinary catheters to reduce of biofilm production by other pathogenic strains (80). In individuals
with an intermittent catheterization, a decrease in the development of UTIs is reported.

Bacteriophages Specifically, lytic phages (the natural predators of bacteria) can infect bacteria, interrupt the normal bacterial
metabolism (especially the biofilms of P. mirabilis and E. coli), and support viral replication (82); phages of S. aureus
(83) with bactericidal activity control biofilm formation by replicating at infection site and depolymerize the
destruction of the biofilm EPS matrix (84, 85).

Quorum sensing (QS) inhibitors QS is a kind of relationship among bacterial cells responding to extracellular signaling molecules, called
autoinducers (AIs) (86). AIs, small signal molecules proportional to cell-density related to gene expression (87), can
regulate several processes involved in virulence such as motility and biofilm formation (88). This is necessary for
planktonic bacteria to present the biofilm phenotype. An effective QSI inhibitor should have some characteristics, as
described below (89): A, capable of excluding gene expression pertaining to QS by a low molecular mass; B,
significant specificity for QS regulators; C, No toxicity foreukaryotic cells, D, non-interference with the fundamental
bacterial metabolic processes to elude the resistance development; E, chemically permanent, resistant to the host
metabolism, and inhabiting in the host cell for a long time; HSL, N-acyl homoserine lactone, is analogous to the QS
signal. It can emulates blocking QS, with signals to receptor binding, and prohibit the biofilm formation of S. aureus
(90). Garlic extract can enhance the susceptibility against tobramycin by modifying the architecture of bacterial
biofilms (91). Moreover, peptides display the QSI activity; The RNAIII-preventing peptide is capable of prohibiting
agr-mediated biofilm production in drug resistant S. epidermidis (90, 92).

Low-energy surface acoustic waves (SAW) SAW intervenes with planktonic microorganisms’ adhesion to cellular surfaces (88). It has been applied for urinary
catheters to reduce of biofilm production by other pathogenic strains (93, 94).

Antiadhesive compounds/molecules It should specifically interact with the adhesions of pathogen and prohibit the union among pathogen and
eukaryotic cell. It decreases invasion or host cells infection and eludes reversion; Cranberry produces a
proanthocyanidin trimer in the extract and has an anti-adherence effect against uropathogenic E. coli (UPEC). Other
antiadhesion agents are pilicides, mannosides, and curlicides (43).

4. Conclusions

About 80% of infectious diseases are induced by
biofilms; hence, the ever-increasing proliferation of mi-
crobes against human-made medication and inherent ca-
pabilities such as biofilm production have expanded the
challenges posed to medical sciences. In recent years, re-
search efforts have focused on the progression of effective
remedial techniques not generating drug resistance in mi-
crobial association. In this regard, understanding bioavail-
ability mechanisms, the survival and development of mi-
crobes within the biofilm structure, and the role of this fea-

ture in the spread of chronic diseases is a key to discovering
effective methods to deal with germs. Despite extensive
research on microbial biofilms, there are still some ambi-
guities regarding their mechanism of action, which high-
lights the significance of conducting further studies.
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