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Abstract

Retapamulin is one of the antibiotics recently developed semi-synthetically to inhibit protein synthesis in a specific manner dif-
ferent from other antibiotics. This pleuromutilin derivative shows magnificent anti-bacterial activity in Gram-positive pathogens,
especially Staphylococcus aureus and Streptococcus pyogenes, and now it is available in ointment formulations (1%) for clinical use
with negligible side effects. Despite the low potential for resistance development, antimicrobial susceptibility rates are significantly
high. This is especially important when the prevalence of mupirocin-resistant strains is increasing, and the need for new alterna-
tives is urgent. Unfortunately, due to its oxidation by cytochrome p450, this drug cannot be used systemically. However, another
pleuromutilin derivative with systemic use, lefamulin, was approved in August 2019 by the US Food and Drug Administration. In
addition to pharmacokinetic features, financial issues are also barriers to consider in the progress of new antimicrobials. In this
review, we attempt to take a brief look at the derivatives usable in humans and explore their structures, action mode, metabolism,
possible ways of resistance, resistance rates, and their clinical use to explain and highlight the valuable points of these antibiotics.
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1. Context

Reaching antibiotic resistance to critical status in re-
cent years brings the World Health Organization (WHO)
and the Centers for Disease Control (CDC) to declare that
antibiotic resistance is becoming a pandemic (1). There-
fore, alternative antimicrobial compounds are being de-
veloped to combat pathogens that already resist existing
antibiotics (2). Pleuromutilins are a class of antimicro-
bial agents that inhibit protein synthesis. One of the pleu-
romutilin compounds approved by the Food and Drug
Administration (FDA) in 2007 for human use is retapa-
mulin (RET). It is a semi-synthetic derivative of pleuro-
mutilin discovered by GlaxoSmithKline and known by the
commercial name Altabox in the USA and Altargo in Eu-
rope (3-6). Topical RET ointment (1%) is used to treat im-
petigo caused by methicillin-susceptible Staphylococcus au-
reus (MSSA) and Streptococcus pyogenes.

Moreover, it has been shown that RET effectively treats
secondarily infected wounds with negligible side effects.
Furthermore, retapamulin shows fine in vitro activity
against most facultative aerobic pathogens (2, 7). Besides,
with rising resistance to mupirocin and fusidic acid in S.
aureus and macrolides and clindamycin in S. pyogenes, re-
tapamulin could act as a potential alternative drug for top-

ical treatment and management of skin structure infec-
tions (2, 4, 8, 9). This paper is a brief review of the structure,
action mode, metabolism, epidemiology of resistance, and
the clinical use of retapamulin as a new antibiotic in the
class of pleuromutilin anti-infective drugs.

2. Structure of Antibiotic

Pleuromutilin, first isolated from the fungi Pleurotus
mutilis and P. passeckerianus in the 1950s by Kavanagh and
his colleagues, is a tricyclic diterpenoid compound, as
shown in Figure 1. It inhibits the synthesis of proteins by
binding to the Peptidyl Transferase Center (PTC) of the ri-
bosome (10). Pleuromutilin has a medium effect on Gram-
positive bacteria and Mycoplasma, but the semi-synthetic
derivatives of pleuromutilin with changes in C-14 have im-
proved its activity against Gram-positive bacteria leading
to new derivatives such as tiamulin, valnemulin, and re-
tapamulin (RET). Only RET has been approved for human
medicine, and the rest are used in veterinary for poultry
and pigs. The C-14 side chain, in particular, can be consid-
ered the point of change in these compounds where the
extensions can achieve extra hydrogen bonds between the
drug and PTC and somehow overwhelm resistance mech-
anisms that are the result of mutations in the ribosome
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structure (5, 6, 11-14).

3. Mechanism of Action and Metabolism

As previously mentioned, retapamulin plays its role
by binding into the PTC of the ribosome, which causes
the inhibition of active 50s ribosomal subunit and protein
synthesis, contributing to growth inhibition and, in some
cases, cell death (5). This mechanism differs from other
antibiotic classes that inhibit protein synthesis by bind-
ing to the ribosome, like macrolides, lincosamides, pheni-
cols, oxazolidinones, and streptogramins (8). As presented
in Figure 2, retapamulin causes hydrogen-bonding inter-
actions with the target. It also prevents protein synthe-
sis by affecting three subjects: First by inhibiting the 50s
subunit from binding to the 30s subunit, second by dis-
rupting the peptidyl transferase and preventing fMet-tRNA
from setting on the P site of the ribosome, and third by
playing a role in impairing the tRNA binding to the P-site,
leading to the relocation of tRNA on the ribosome so that
tRNA would not be able to participate in the peptidyl trans-
fer. This mechanism is unique and different from other
antibiotics like macrolides and ketolides and diminishes
the cross-resistance phenomenon (8). Furthermore, reta-
pamulin has a high efficiency against isolates resistant to
other inhibitors of protein synthesis and different classes
of antibiotics like β-lactams, fusidic acid, erythromycin,
mupirocin, azithromycin, levofloxacin, mupirocin, and
quinolones. Additionally, RET has the advantage of not
binding to eukaryotic ribosomes, thus not affecting mam-
malian protein synthesis (15). In summary, retapamulin,
by making multiple interactions with the ribosome, plays
its role in inhibiting bacterial growth (9, 16-18).

With all good features, later on, it was found that reta-
pamulin cannot be used for systemic infections because of
the inadequate pharmacokinetic features such as low oral
absorption, low water solubility, and rapid metabolism
that results in a short lifetime (5). Data related to pharma-
codynamics and pharmacokinetics of RET are very sparse,
and the RET distribution in the human body is not well de-
termined. In healthy adults who used 1% retapamulin oint-
ment once daily, absorption, distribution, and metabolism
were investigated. The results indicated that systemic ex-
posure via the skin was shallow in topical use (5, 18). Fur-
thermore, due to the topical use and low systemic expo-
sure, the elimination from the body has not been analyzed
yet, and the effect on normal flora is unknown. However,
RET has been suggested to have too little interference with
the gastrointestinal flora (5, 8). A study conducted by Sun
et al. documented that cytochrome P450 enzymes metab-
olize RET in C-2 and C-8 positions, which accounts for low
bioavailability and short efficacy of the drug (12). Due to

its low exposure after topical use, interference with the
metabolism of other P450 substrates seems unlikely (19).

4. In Vitro Susceptibility

Retapamulin was initially developed for topical treat-
ment of skin infections caused by S. aureus and S. pyogenes.
Also, it can be effective against many Gram-positive bac-
teria like Streptococcus pneumoniae, Coagulase-Negative
Staphylococci (CoNS), Streptococcus agalactiae, Streptococci
viridans, Propionibacterium acnes, Corynebacterium spp., and
Micrococcus spp. (2, 20). However, it almost does not
affect Gram-negative bacteria, except for Haemophilus in-
fluenza and Moraxella catarrhalis. It can be used against
vancomycin-susceptible strains of Enterococcus faecium,
while it does not affect E. faecalis (20). As the final point, RET
shows good activity against anaerobic Gram-positive cocci
and is as effective as Co-amoxiclav, imipenem, metron-
idazole, and clindamycin against Prevotella spp., Porphy-
romonas spp., and Fusobacterium spp. (2, 19). Notably, reta-
pamulin can maintain its activity against other pathogenic
strains that become resistant to methicillin, erythromycin,
fusidic acid, mupirocin, azithromycin, and levofloxacin
(20). Usually, RET is a bacteriostatic drug unless the concen-
tration rises by 1000 times, becoming a bactericidal agent
(19). The minimum inhibitory concentration (MIC) of reta-
pamulin is shown in Table 1.

5. Mechanisms of Resistance to Retapamulin

Bacteria are capable of gaining resistance to antimicro-
bial drugs after exposure to sub-lethal doses. In a multi-
step resistance selection study, the authors passaged four
MRSA strains in the presence of retapamulin with the ini-
tial MIC of 0.25 µg/mL. The final MIC at passage 55 was 8
µg/mL for three strains and 4µg/mL for the leftover strains
(26). This research indicated the potential for mutational
resistance to RET, affecting the 50s ribosomal subunit. The
resistance can be acquired by various mechanisms, includ-
ing: (1) nucleotide substitution in rRNA or amino acid sub-
stitution in ribosomal proteins, thereby blocking peptide
formation directly by interfering with substrate binding;
(2) methylation of rRNA; (3) enzymatic inactivation of an-
tibiotic; and (4) efflux pumps that expel antibiotics from
the cell.

5.1. Protein Synthesis Inhibitor

The aforementioned antimicrobial agents bind to a
well-conserved region of the ribosome, which is formed
mainly of RNA. It is not expected that mutations occur in
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Figure 1. Chemical structure of retapamulin

the conserved regions. Besides, many bacteria have multi-
copy ribosomal RNA, which reduces the effect of a single
mutation, and the copy number of 23s rRNA can be a lim-
iting factor for drug-resistant mutants. Miller et al. inves-
tigated the mechanisms of linezolid and tiamulin cross-
resistance in S. aureus and found that mutations in multi-
copy ribosomal RNA (rrn) operons led to resistance to both
classes of antibiotics (27). Also, the mutations in ribosomal
proteins correlate with drug resistance. For example, the
L3 S158 mutation (rplC) in S. aureus favors the resistance to
tiamulin by deviating the conformation in the binding site
(27-29).

5.2. Methylation of rRNA

The cfr gene is a multidrug resistance gene, often lo-
cated on plasmids. It codes an enzyme that methylates the
adenine residue at position 2503 in the enzymatic center
of 23S rRNA, which is the binding site of antibiotics. The
existence of this gene in bacterial cells can cause multi-
resistance to phenicols, lincosamides, macrolides, oxazo-
lidinones, pleuromutilins, and streptogramin A (known as
PhLOPS phenotype) (30). Several studies have described
the presence of cfr in unexpected outbreaks of linezolid-
resistant Staphylococci and considered it an emerging

global health threat, which can be associated with pleuro-
mutilins resistance (31, 32).

5.3. Enzymatic Inactivation of Antibiotic

Until now, there was not any report of an antibiotic-
inactivating enzyme that especially makes the pleuromu-
tilins inoperative. Such enzymes can modify the structures
of antibiotics by hydrolyzing, transferring diverse groups,
and performing oxidoreductase activity that hurdles the
target affinity, decompose the antibiotic, or block the cel-
lular uptake (33). Covalent modification of antibiotics can
perturb target affinity, block cellular uptake, trigger efflux
mechanisms, or lead to the decomposition of the antibi-
otic.

5.4. Efflux Pumps

Efflux pumps are active transporters that cause
multiple-drug resistance in pathogenic bacteria. They can
increase the MICs of their substrates, but not necessarily to
the levels indicative of clinical resistance. Efflux can be the
fastest and most effective resistance mechanism for antibi-
otics that act inside the bacterial cell. As known, Vga (A),
Vga (C), and Vga (E) are members of the ATP-binding cas-
sette (ABC) family of proteins that export streptogramins,
lincosamides, and pleuromutilins (34-38). Harrington et
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Figure 2. A, in a normal prokaryotic ribosome, translation begins with the interaction between the 30S subunit and the mRNA template when the initiation codon is placed
at the P site. The tRNA charged with N-formylmethionine enters the p site. With the collaboration of initiation factors, the 50S subunit joins and conformational changes
form the 70S subunit; B, when retapamulin exists in the cytoplasm, it can inhibit protein synthesis by causing hydrogen bonding interactions within the ribosomal complex,
especially with PTC. Firstly, the conformational changes would not let the 50S subunit join the 30S and form the 70S subunit. Secondly, it prevents fMet-tRNA from setting on
the P site of the ribosome, and then, it relocates the tRNA on the ribosome and would not let it take part in the peptidyl transfer.
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Table 1. In vitro Activity of Retapamulin Against Different Pathogens

Study and Species MIC50 MIC90 MIC Range Ref.

Pankuch et al. (2006) (21)

Methicillin-susceptible Staphylococcus aureus 0.06 0.125 0.03 - 0.125

Methicillin-resistant S. aureus 0.06 0.125 0.06 - 0.25

Macrolide-susceptible Streptococcus pyogenes 0.016 0.03 0.016 - 0.03

Macrolide-resistant S. pyogenes 0.016 0.016 0.008 - 0.03

Harrington et al. (2016) (4)

Methicillin-resistant S. aureus 0.12 0.25 0.008 to ≥ 16

Jones et al. (2006) (22)

Erythromycin-resistant S. aureus 0.06 0.12 ≤ 0.03 - 0.12

Mupirocin-resistant S. aureus 0.06 0.12 ≤ 0.03 - 0.12

Oxacillin-resistant S. aureus 0.06 0.12 ≤ 0.03 - 0.12

Erythromycin, mupirocin, and oxacillin susceptible S. aureus 0.06 0.12 ≤ 0.03 - 0.12

Mupirocin-resistant CoNS ≤ 0.03 0.06 ≤ 0.03 - 0.12

Oxacillin-resistant CoNS ≤ 0.03 0.06 ≤ 0.03 - 0.12

Mupirocin- and oxacillin-susceptible CoNS ≤ 0.03 0.06 ≤ 0.03 - 0.25

Erythromycin-resistant S. pyogenes ≤ 0.03 ≤ 0.03 ≤ 0.03 - 0.06

Saravolatz et al. (2013) (23)

Methicillin-resistant S. aureus 0.12 0.12 0.06 - 0.12

Vancomycin intermediate S. aureus 0.06 0.12 0.03 - 0.25

Vancomycin-resistant S. aureus 0.06 0.12 0.03 - 0.25

Daptomycin-nonsusceptible S. aureus 0.06 0.12 0.03 - 0.25

Mupirocin susceptible S. aureus 0.06 0.12 0.03 - 16

Mupirocin low-level resistance S. aureus 0.06 0.03 - 1

Mupirocin high-level resistance S. aureus 0.12 0.12 0.06 - 0.25

linezolid nonsusceptible S. aureus 1 0.06 - 16

Park et al.(2015) (15)

Mupirocin-resistant S. aureus 0.5 0.5 0.5

Rittenhouse et al. (2006) (24)

S. epidermidis 0.06 0.12 0.03 - 0.12

S. saprophyticus 0.12 0.12 0.03 - 2

S. pyogenes 0.008 0.016 ≤ 0.004 - 0.12

S. agalactiae 0.016 0.03 0.008 - 0.03

Viridans group streptococci 0.03 0.12 0.008 - > 4

S. pneumonia 0.06 0.12 0.03 - 0.12

Haemophilus influenza 0.5 2 0.25 - 2

Moraxella catarrhalis 0.3 0.3 0.016 - 0.06

Odou et al. (2007) (2)

Bacteroides fragilis 0.25 64 0.03 - 64

Bacteroides thetaiotaomicron 16 > 64 ≤ 0.015 - > 64

Other Bacteroides spp. of the B. fragilis group 2 32 ≤ 0.015 - > 64

Clostridium perfringens 0.125 1 0.03 - 1

Other Clostridium spp. 0.5 64 ≤ 0.015 - > 64

Propionibacterium acnes 0.125 0.25 ≤ 0.015 - 2

Goldstein et al. (2006) (25)

P. acnes ≤ 0.015 0.25 ≤ 0.015 - 1

al. analyzed a single S. aureus isolate with an elevated RET
MIC by polymerase chain reaction (PCR) for the vgaA gene.
The sequenced amplified product was 100% identical to
vgaA of S. aureus, and they suggested that the elevated MIC
might be linked to the acquisition of vgaA (4). In a study
on S. agalactiae isolates from the USA, Hawkins et al. found
out that lnu (B) is invariably present in combination with
lsa (E) on the same transposable element (TE) and trans-
forms cross-resistance to lincosamides, streptogramins A,
and pleuromutilins among the isolates (39). Besides, lnu

encodes the lincosamide O-nucleotidyltransferase, which
enzymatically inactivates the antibiotic (40). Also, lsa,
which codes for an ABC transporter, was first discovered
in E. faecalis (41). Since this TE has been discovered in S.
aureus (42), these genes are expected to act synergisti-
cally and produce cross-resistance in S. aureus (43, 44).
Recently, Schuster et al. evaluated the impact of RND-type
transporters on the susceptibility to available oxazolidi-
nones and pleuromutilins in E. coli. They showed different
pathways for oxazolidinones and pleuromutilin deriva-
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tives through resistance-nodulation-division (RND)-type
transporters, depending on the molecular weight of the
components (45). Unexpectedly, not all combined mech-
anisms increase the resistance to ribosome-targeting
antibiotics. For example, the degree of resistance achieved
from Cfr methyltransferase depended on L3 mutations,
and some of them could decrease the effect of methylation
and lower the MIC (46).

6. Epidemiology of Retapamulin Resistance

The data on the worldwide prevalence of RET resis-
tance between clinical isolates of Gram-positive cocci are
scanty, with rates of resistance ranging from less than 1 to
2.6% (brief data are shown in Table 2). The point is that
RET acts effectively on MRSA in vitro but shows poor out-
comes in clinical trials. Most studies reported negligible
RET-resistance rates among MRSA isolates, which may re-
sist the other antibiotics such as vancomycin, linezolid,
mupirocin, and fusidic acid. Epidemiologic findings sug-
gest that RET-resistant isolates cross-resist with linezolid
frequently (23, 47, 48). Furthermore, by examining the
presence of the smr, vga, and cfr genes by PCR and sequenc-
ing the 23S rRNA and the gene encoding ribosomal pro-
tein L3, rplC, in resistant isolates, the authors investigated
whether a particular gene or mutation is responsible for
the RET-resistance phenotype.

Over time, the expanding use of topical ointments con-
taining retapamulin caused a slight rise in the prevalence
of resistance to RET in the USA, where this alternative is
used in treatment regimens. However, in Asia, S. aureus
clinical isolates are pretty susceptible. In addition, data
have shown that the prevalence of mupirocin-resistant iso-
lates has dramatically increased via gene transfer between
strains, and thus, retapamulin as a promising alternative
can be applied to eradicate these resistant isolates (Table
2).

7. Clinical Treatment

By increasing resistance to well-known antibiotic
classes such as beta-lactams, the interest in pleuromu-
tilins has revived. In 2007, retapamulin was the first
pleuromutilin that got approval for clinical use in hu-
mans in the form of ointment 1% (Altabax) (52). For the
treatment of localized impetigo, a cutaneous infection
due to S. aureus and S. pyogenes, topical antibiotics with
fewer side effects are considered the drug of choice. Two
clinical trial studies (7, 9) have proven the efficacy and
safety of retapamulin ointment against bacteria, showing
no statistical differences between retapamulin and fusidic

acid for impetigo treatment (53). Although the use of
retapamulin for treating infections with other etiologies
is not recommended, evidence indicates the excellent
potential of this antibiotic for the treatment of skin and
soft-tissue infections related to anaerobe bacteria (2).

Furthermore, other clinical trial studies (54, 55) re-
vealed that RET is an effective drug for treating secondar-
ily infected traumatic lesions (SITLs), which has been non-
inferior to oral cephalexin. In a recent post-marketing
surveillance (PMS) study, the effectiveness rate was 96.1%
(1,697 out of 1,765 subjects) and the incidence of serious ad-
verse events was 0.28% (56), while adverse events were pri-
marily local, including irritation, burning, pruritus, pain,
erythema, eczema, and contact dermatitis. Despite these
advantages, the clinical efficacy of topical retapamulin for
the treatment of MRSA infections is doubtful compared to
other antibiotics like linezolid and cephalexin (57, 58). Nev-
ertheless, no studies have yet indicated the exact cause of
efficacy reduction in MRSA strains.

Nasal S. aureus (including MRSA) carriage is one of the
most important causes of the dissemination of nosoco-
mial infections in health care settings. Given the high
rate of nasal MRSA carriage (59), eradicating MRSA nasal
carriage from patients and hospital staff can help con-
trol outbreaks. Mupirocin has been applied for the nasal
decolonization of the carriers since the 1980s (60). The
mupirocin-resistant phenotype emerges when the muta-
tion of chromosomal gene ileS-2 (mupA) occurs, or the
bacteria gain the alternative gene by transferable plas-
mids (61). Therefore, new therapies are needed to replace
mupirocin (62). Harrington et al. evaluated the activity
of RET against MRSA isolates by in vitro experiments and
noticed that 99% of them were susceptible (4). A phase-
IV clinical trial of retapamulin as a topical decolonizing
agent for mupirocin-resistant MRSA was conducted in 2011
(NCT01461668), reporting the efficacy of retapamulin in
eight out of 25 (32%) participants versus four out of 25
(16%) in the placebo group. After a three-year follow-up,
no adverse effect was reported from subjects. The authors
also reported that RET significantly reduced mupirocin-
resistant MRSA strains for only one week, introducing it as
an excellent alternative to mupirocin in temporary risk pe-
riods such as surgeries and ICU stays (63).

8. Other Pleuromutilin Derivatives for Clinical Use

Among many pleuromutilin semi-synthetic analogs,
BC-3781, best known as lefamulin, is the first pleuromutilin
evaluated for clinical systemic uses. Lefamulin is devel-
oped by Nabriva Therapeutics for oral and intravenous ad-
ministration. It has been currently passed phase III clini-
cal trials for the treatment of community-acquired bacte-
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Table 2. Studies of the Epidemiology of Retapamulin Resistance in Different Years and Regions Showing Slight Increase in Specific Populations

Year Region Population Susceptibility Ref.

2008 UK Strains were submitted to the HPA Centre from the UK 99.9% (664/663) (6)

2008 USA 390 streptococcal strains and 344 staphylococcal strains collected from recent clinical isolates 100% (390/390); 95.6% (344/329) (49)

2011 Spain Collection of clinical isolates that 18 of them were linezolid-resistant and 10 were MRSA. 52.6% (38/20) (48)

2013 USA A diverse group of strains, including mupirocin, VRSA, VISA, and daptomycin-non-susceptible
isolates

97.4% (155/151) (23)

2014 USA Pediatric patients with a median age of 27 months 86.0% (400/344) (50)

2015 Korea Clinical MRSA isolates from patients of tertiary hospitals 100% (497/497) (15)

2018 Singapore Non-duplicate MRSA clinical isolates 100% (200/200) (51)

rial pneumonia (CABP), acute bacterial skin and skin struc-
ture infections (ABSSSIs), and sexually transmitted infec-
tions (64-66). Lefamulin has potent activity against Gram-
positive, Gram-negative, and atypical pathogens associ-
ated with respiratory tract infections (65, 67). Previous
studies have shown that lefamulin can reach a high con-
centration in the cell and has rapid accumulation into
murine macrophages while its potency would not be af-
fected by lung surfactants (65, 68). Also, it shows rapid
plasma absorption and fast, predictable penetration into
soft tissue and lung epithelial lining fluid (ELF) (66, 69).

Furthermore, it indicates that lefamulin is potentially
as effective as vancomycin in treating ABSSSIs caused by
Gram-positive pathogens (66, 70). Current data demon-
strate that lefamulin is safe and well-tolerated, and since it
reaches the therapeutic concentrations in the ELF, it can be
used to treat adults with CABP (66). Additionally, like other
pleuromutilins, it inhibits protein synthesis with a unique
mechanism, so the chance of cross-resistance with other
antibiotics would be minimized. The FDA approved lefa-
mulin in August 2019 based on results from the Lefamulin
Evaluation Against Pneumonia (LEAP 1) (NCT02559310) and
LEAP 2 (NCT02813694) clinical trial studies, which com-
pared five-day oral lefamulin with seven-day oral moxi-
floxacin for the treatment of CABP. The efficacy of lefa-
mulin was non-inferior to that of moxifloxacin in adults
with CABP and was generally safe and well-tolerated (71,
72). Lefamulin empiric monotherapy gives high response
rates to typical and atypical CABP pathogens, and conse-
quently, clinicians can use it as a potential alternative for
the treatment of CAPB when antibiotic resistance limits
the primary antibiotics for treatment.

9. Conclusions

Increased antibiotic resistance has been one of the se-
vere issues in recent studies, prompting research to dis-
cover and introduce new antimicrobials with greater effi-
cacy and accuracy against resistant superbugs. The com-

ponents of pleuromutilins have been used in veterinary
medicine for many years, and recently a semi-synthetic
derivative called retapamulin has introduced itself as an al-
ternative topical antibiotic. Experiments have shown that
it was as effective as common topical agents and super-
seded them due to the increased rate of "resistance" among
older antibiotics, and this point remains one of the most
common indications for using novel antibiotics. Although
it is not helpful for systemic use owing to rapid hepatic
metabolism, it can be used in topical ulcers with Gram-
positive etiology. It also can temporarily stop MRSA colo-
nization in patients and hospital staff. Research on bacte-
rial protein synthesis and ribosome profiling can use RET
due to its bacteriostatic properties (73, 74), and since it has
a different binding site than have routine antibiotics such
as chloramphenicol, these studies may give us new data in
this field. Finally, a more recently pleuromutilin derivative
with systemic usability, lefamulin, is undergoing clinical
trials. In this review, we attempted to examine the deriva-
tives usable in humans briefly and explore their structures,
action mode, metabolism, possible ways of resistance, re-
sistance rates, and clinical use to explain and highlight the
valuable points of these antibiotics. It is suggested that fu-
ture in vivo studies and clinical trials focus on protecting
the RET structure against oxidation and examine its poten-
tial for eradicating other etiologies of wound infection.
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