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Abstract

Background: The serious outbreak of coronavirus disease 2019 (COVID-19) has provoked deep concern throughout the world.
The pathophysiologic network leading to severe conditions has still unsolved gaps. Considered a pleiotropic, multifaceted
cytokine, macrophage migration inhibitory factor (MIF) has distinct functions, which seem to stand at the edge of distinct known
mechanisms involving in COVID-19 pathogenesis. Additionally, MIF is a key mediator of acute respiratory distress syndrome and
lung injury.
Objectives: The current study aimed to evaluate the serum levels of MIF in COVID-19 patients, particularly in severe cases.
Methods: This case control study was performed on the sera of 60 randomly selected COVID-19 patients as case group and
30 randomly selected healthy individuals as control group during November 2020 till April 2021 at Mashhad University of
Medical Sciences. The case group included 30 outpatients with mild disease and 30 hospitalized severe subjects. A commercial
enzyme-linked immunosorbent assay was utilized to measure serum MIF. Data were analyzed using SPSS version 16 with student
t-test and chi-squared test considering a P < 0.05 as statistical significance level.
Results: There was no statistical difference between two groups regarding demographic variables. According to the obtained
data, significantly higher MIF levels were observed in the affected subjects than the healthy individuals, particularly in severe
COVID-19 subjects (severe: 65.31 ± 6.2 ng/mL, mild: 40.45 ± 6.6 ng/mL, healthy: 20.63 ± 6.1 ng/mL P < 0.0001). The receiver operating
characteristic (ROC curve) drawn for the present study illustrates that MIF amounts differentiate COVID-19 severe and mild cases
with high accuracy (90.8%) (sensitivity:86.6%, specificity:96.6%).
Conclusions: There might be an association between MIF concentration with respiratory failure and disease exacerbation due to
COVID-19 infection. Therefore, MIF can act as a marker of clinical severity for COVID 19 infection. However, due to variations in MIF
amounts a definite cut-off value might be specific to the study and should be considered with caution. MIF is supposed to be one
of the most important cytokines in COVID-19 pathogenesis and might be a target for therapeutic approaches with MIF inhibitors in
possible upcoming disease peaks.
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1. Background

Coronavirus disease 2019 (COVID-19), brought about
by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has been well described as “a very visible
pandemic” (1), affecting all aspects of global life and will
be undoubtedly recorded as one of the top human health

challenges in the 21st century. The unique aspects of this
new infection have resulted in rapidly changing patient
care strategies and protocols over time. These include high
transmissibility of an airborne disease, distinct clinical
manifestations, inadequate therapeutic strategies, and
insufficient understanding of pathogenesis. Therefore,

Copyright © 2023, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

https://doi.org/10.5812/archcid-133714
https://crossmark.crossref.org/dialog/?doi=10.5812/archcid-133714&domain=pdf
https://orcid.org/0000-0001-8915-3596
https://orcid.org/0000-0003-2698-176X
https://orcid.org/0000-0001-6028-3573


Farzad F et al.

extensive studies are urgently needed to improve patient
management in terms of prognostic tools and new
therapeutic approaches. Up to the present, numerous
investigations have assessed the efficacy of various
biomarkers testing for COVID-19 to enable the world
to respond to the challenge of severe cases of COVID-19
infection (2, 3).

Macrophage migration inhibitory factor (MIF), derived
its name initially from the in vitro assay, is the protein
secreted from lymphocytes and inhibits the macrophages
from moving away from the protein release site. However,
the name might be misleading because its role as a
monocyte/macrophage chemotoxic factor has been well
established (4-6). Initially, lymphocytes were considered
the main cells secreting MIF. However, as previously
reviewed (7), it became shortly uncovered that MIF is a
pleiotropic cytokine secreted by a vast majority of cell
types. The MIF is continuously synthesized and stored
within intracellular storage pools (8).

The MIF secreting cells are vast cell types mainly
consisting of lymphocytes, monocytes/macrophages,
dendritic cells, blood granulocytes and mast cells, lungs
epithelial cells, vascular endothelial cells, and endocrine
glands or tissues involved in stress conditions, such as
pituitary and adrenal glands (9, 10). These cells secret MIF
as an important multifunctional factor in response
to injury, inflammation, hypoxia, and other stress
conditions and make a network of distinct responses,
including upregulated innate and adaptive immune
responses, and inflammatory responses (10, 11), and
systemic quasi-hormonal response (12). The latter (stems
emerging from) is linked to MIF endocrine regulatory role
in systemic responses to severe stress conditions, such
as endotoxic shock (13, 14). In addition to “multifaceted”
immune and inflammatory signaling cascades (15, 16),
MIF has been shown to exhibit an anti-glucocorticoid
activity (17). The MIF is a double-edged sword. It is released
to stimulate inflammatory responsespost-injury tissue
healing activities (18); however, MIF release might result
in uncontrolled acute inflammatory responses with tissue
damage and organ dysfunction (19).

The role of MIF in numerous human diseases has been
noted as reviewed by Lue et al. (20). It is worth mentioning
that MIF changes have been observed in inflammatory
diseases (21), pulmonary inflammation (22), lung injury
(23), acute respiratory distress (24-26), septic shock (27),
and endothelial damage (28). Interestingly, MIF inhibitor
agents have been proposed for therapeutic purposes in
septic shock and inflammatory conditions (8, 29).

2. Objectives

COVID-19 shares distinctive features with
melanocyte-inhibiting factor activities; therefore, the
present study hypothesized that this factor might
be linked with COVID-19 severity and exacerbation.
Considering the unique role of MIF as an early regulator of
innate and adaptive immune responses, the current study
aimed to analyze the serum level of MIF as a significant
predictor of COVID-19 severity.

3. Methods

3.1. Study Design and Participants

This case-control study was performed in one of
the primary university-affiliated centers devoted to
COVID-19 subjects during November 2020 till April 2021.
The research population included 60 patients with
COVID-19 diagnosis as case group and 30 normal age-
and sex-matched cases as control group. The infected
cases were divided into two distinct groups, including
30 outpatients who had mild clinical symptoms and
no pulmonary involvement in imaging tests and 30
patients hospitalized in the intensive care unit (ICU)
who had respiratory distress syndrome (shortness of
breath, oxygen saturation ≤ 93% at rest, respiratory rate
≥ 30 times/minute, and evidence of lung injury). The
subjects were divided into mild and severe groups using
the diagnosis and treatment protocol for patients with
COVID-19 (trial version 8) (30).

The exclusion criteria of all groups consisted of main
underlying conditions, like chronic heart disease, kidney
and liver dysfunction, autoimmune disease, cancer,
immunodeficiency, and receiving immunosuppressive,
antiviral, or immune-boosting treatment. Electronic
medical records were used to collect all clinical and
paraclinical data. Fulfilling a minimum of one of the
criteria, namely ICU admission, needed mechanical
ventilation, and mortality due to any reason was described
as a poor prognosis.

3.2. Laboratory Tests

The oropharyngeal and nasopharyngeal swabs of
real-time polymerase chain reaction standard kits were
used to find the SARS-CoV-2 viral nucleic acid. When
the patients were admitted to the hospital, the blood
samples were taken from all study groups. A complete
blood count, C-reactive protein (CRP), hemoglobin (Hb),
lactate dehydrogenase (LDH) activity, hematocrit (Hct),
and serum MIF concentration were obtained in this study.
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3.3. Assays for Serum MIF Measurement

Human MIF Quantikine Enzyme-Linked
Immunosorbent kits (R & D Systems, USA) were utilized
for the analysis of MIF serum levels. The quantitative
sandwich enzyme immunoassay technique was applied
in this assay. A human MIF- specific monoclonal antibody
underwent pre-coating onto a microplate. Pre-diluted
specimens and standards were added to the wells. After
the washing process, a human MIF- specific enzyme-linked
polyclonal antibody was integrated with the mixture.
The next stage involved washing steps and adding the
substrate to develop color. Color intensity was directly
proportional to the bound MIF amount in the first step.
Finally, the color development was stopped to measure
the color intensity in the final products.

3.4. Ethical Considerations

We considered the ethical standards of the national
and institutional research committees. Moreover,
this research followed the Declaration of Helsinki
on human research. The study approved by Ethics
Committee of Mashhad University of Medical Sciences,
(IR.MUMS.MEDICAL.REC.1399.562).

3.5. Data Analysis and Statistics

The descriptive indices like as mean and standard
deviation and number and percentage were used for
continuous and categorical data, respectively. The one
way analysis of variance (ANOVA) and chi-square test were
utilized for the comparison of the variables in the study
groups. The Pearson/Spearman correlation tests were
employed for the analysis of the possible relationships
between variables as appropriate. Furthermore, the
estimation of the prognostic value of serum MIF for
COVID-19 patients was performed using the receiver
operating characteristic (ROC) curve. The significance
level was regarded as less than 0.05. The SPSS 16.0 and
GraphPad Prism 6 were utilized for data analysis

4. Results

Table 1 describes the subjects’ characteristics. In this
research, 58% (N = 52) of the patients were male. The
subjects aged 25 - 68 years. Out of 30 severe cases, 5 patients
passed away. More than half of the COVID-19 subjects in this
study were middle-aged male patients over 30 years (Table
1).

4.1. Assessment of Serum MIF Levels in Study Groups

The subjects with severe COVID-19 demonstrated a
higher serum MIF levels in comparison to those with mild
symptoms (MIF mean value: 65.31 ± 6.2 and 40.45 ± 6.6
ng/mL respectively; P < 0.0001). Additionally, subjects
with both mild and severe COVID-19 showed a statistically
significant higher MIF level than the healthy individuals
(MIF mean value for healthy subjects: 20.63 ± 6.1 ng/mL; P
< 0.0001) (Figure 1).
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Figure 1. Serum levels of MIF across study groups. ANOVA test was used to determine
the differences, indicated by asterisks. The values show significant differences
between control (N = 30) and severely-ill patients (N = 30, **** P = 0.0001), control and
asymptomatic patients (N = 30, **** P = 0.0001), and between two groups of COVID
positive patients (**** P = 0.0001).

4.2. Relationship Between Serum MIF and Clinical
Characteristics

Based on the Pearson / Spearman correlation, in case
group there was a strong positive correlation between
MIF serum levels with Neutrophil Lymphocyte Ratio (NLR)
and CRP. Although not statistically significant, higher MIF
levels were also positively related to incidence of dyspnea,
acute respiratory distress syndrome, and death in case
group (P > 0.05; Table 2). However, lymphocyte count was
inversely associated with MIF levels (Table 2). Moreover,
no significant correlation was observed between MIF
concentration with WBC, polymorphonuclear leukocytes
(PMN), Hb, Hct, platelet count, LDH, fever development,
and age and gender of participants (P > 0.05).

4.3. Prognostic Value of Serum MIF for COVID-19 Patients

This study analyzed the prognostic performance of
MIF as a marker of the COVID-19 severity. The area
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Table 1. Comparison of Laboratory Parameters in Study Population a

Variables Mild Disease Severe Disease Healthy Controls P-Value

Age, y 38.7 ± 6.9 47.3 ± 10.3 39.5 ± 8.8 0.2

Gender

Male 18 (60) 17 (57) 17 (57) -

Female 12 (40) 13 (43) 13 (43) -

Fever 8 (26) 25 (83) 0 0.01

Cough 8 (26) 24 (80) 0 0.006

Fatigue 14 (46) 18(60) 0 0.006

Dyspnea 4 (13.3) 16 (53) 0 0.001

ARDS 0 16 (53) 0 -

Death 0 5 (16.6) 0 -

WBC (/µL) 8350 ± 960 12303 ± 2090 7213 ± 645 0.006

Neutrophils(/µL) 6939 ± 942 11476 ± 2092 4071 ± 511 0.001

Lymphocytes (/µL) 1406 ± 124 827 ± 71 3124 ± 523 0.001

NLR (%) 4.5 ± 0.75 13.1 ± 2.9 1.3 ± 0.32 0.002

Hb (g/dL) 13.01 ± 1 12.7 ± 1.3 13.1 ± 1.4 0.24

HCT (%) 39.4 ± 2.8 38.6 ± 4.3 39.6 ± 4.4 0.31

PLT (×103 /µL) 279 ± 37 210 ± 42 258 ± 40 0.05

CRP (mg/L) 33.7 ± 7.8 259 ± 80 3.26 ± 1.35 0.001

LDH (U/L) 235 ± 22 639 ± 173 217 ± 22 0.007

MIF (ng/mL) 40.45 ± 6.6 65.31 ± 6.2 20.63 ± 6.1 < 0.0001

Abbreviations: WBC, white blood cells; NLR, neutrophil lymphocyte ratio; Hb, hemoglobin; HCT, hematocrit; PLT, platelet; CRP, C - reactive protein; LDH, lactate
dehydrogenase; MIF, Macrophage migration inhibitory factor.
a Values are expressed as mean ± SD or No. (%)

Table 2. Correlation Between serum MIF and Other indicators.

Variable Spearman/Pearson Value P-Value

Lymphocyte -0.85 0.01

NLR 0.89 < 0.001

CRP 0.83 < 0.001

Dyspnea 0.60 0.18

ARDS 0.53 0.55

Death 0.26 0.09

under the ROC curve (AUC) for cut-off point 50.7 ng/mL
was 90.8% (95% CI: 80.5% to 96.7%, P < 0.001) (Figure
2). , and sensitivity and specificity were determined as
86.67% and 96.67%, respectively. This provides a positive
likelihood ratio of 26 and a negative likelihood ratio of
0.14. Additionally, the results showed that significantly
higher serum MIF levels were observed in patients with
poor outcomes (58.38 [32.2-83.2 ng/mL] vs. 40.12 [27.1 - 55.8
ng/mL] for other patients) (P = 0.0001; Figure 2).

5. Discussion

This study showed an increase in MIF levels, along
with COVID-19 disease severity. Greatly higher MIF levels
were noticed in COVID-19 cases than in healthy individuals,
especially in those who had severe complications (P <
0.0001). The second major finding was that severe cases
of COVID-19 infection had significantly higher MIF levels
than patients suffering from a mild disease (P < 0.0001).
The aforementioned results suggest that there might be
an association between MIF concentration and COVID-19
exacerbation; therefore, MIF can act as a marker of clinical
severity for SARS-CoV-2 infection, particularly in case
the clinical manifestations are insufficient to accurately
predict disease progression. The MIF may act as a key
mediator of systemic inflammatory responses in COVID-19
infection.

During the present study’s experimental work and
data analysis, three publications on the topic became
available. The current observations are consistent with
the results of the aforementioned studies, indicating a
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Figure 2. ROC curve analysis of MIF

prognostic role for MIF in COVID-19 patients. A study
by Bleilevens et al. was carried out on 36 mechanically
ventilated COVID-19 patients. The increased plasma levels
of MIF were significantly associated with the development
of organ dysfunction and significantly lower survival (31).

Another study by Aksakal et al. was performed on
110 patients diagnosed with COVID-19 and 40 healthy
volunteers. Significantly, higher MIF levels were reported
in the patients than in the controls. Furthermore, there
was a higher level of MIF in severe patients than in
moderate cases. The ROC curve analysis was carried out for
the differentiation between severe and moderate COVID-19

subjects with MIF levels. The area under the curve was
reported as 0.78. With the MIF cutoff value reported as
4.455 ng/mL, sensitivity and specificity were 83% and 62%,
respectively (32). Similarly, Dheir et al. studied 87 COVID-19
patients, including 47 ICU-admitted and 40 ward-admitted
patients. Regarding MIF levels, a significant difference
was observed between the ICU and ward patients (P <
0.024). The authors also suggested that a MIF level
> 4.705 is associated with a significantly increased risk
of ICU admission (33). Like all patient-based studies,
summative and supportive data from numerous centers
are still needed to fulfill the knowledge gaps. In this

Arch Clin Infect Dis. 2023; 18(2):e133714. 5



Farzad F et al.

regard, one possible argumentation is the cut-off values
reported in the studies. The normal amount of MIF has
been estimated to be up to 10 ng/mL in healthy individuals
(34), though this estimation should be considered with
serious caution. Indeed, the normal value of MIF has
not been determined and such estimated values can be
misleading. MIF amounts show a wide range of variation
based on age (35). In addition, the MIF amount follows a
circadian rhythm throughout the daytime (36). Notably,
according to the manual of the ELISA kit used in the
present investigation, the amount of MIF ranged from
15.3 - 52.3 ng/mL (mean 22.3 ng/mL) among 36 healthy
individuals during kit development studies (available at:
https://www.rndsystems.com). In fact, a wide range of
variations has been observed in healthy control groups
in different studies. In one meta-analysis study (37), the
healthy controls serum levels ranged from 0.3 ± 0.012
up to 61 ± 58.7 ng/mL (38) based on the studies included
in the meta-analysis. Also, in another meta-analysis (27),
the mean serum levels of the control groups among
different studies ranged from 0.121 ± 0.001 up to 46.829
± 38.394 ng/mL (39). This wide range may arise from
several factors such as technical issues or sudden release
of MIF from the intracellular pool, therefore still huge
studies are needed to determine a normal range for MIF
concentration. The above-mentioned facts, every study can
obtain a specific cut-off for the study, and the observed
cut-off values cannot be generalized or included in patient
care protocols; this may even be misleading in clinical
applications. Nevertheless, still increasing or decreasing
amounts of MIF has prognostic value.

The observed increased MIF levels among COVID-19
patients suggest a main pathophysiological role of MIF
in the course of COVID-19 infection. Numerous aspects
of pathophysiology and molecular network beyond
COVID-19 infection have been fully discussed (40-42).
In many of the proposed mechanisms, MIF might be a
central molecule, including cytokine storm (43), innate
(44, 45) and adaptive immune responses (46, 47), and
inflammatory and antioxidant responses (48, 49). In
particular, a key role of macrophages and their activators
as central nodes of the network of events in COVID-19
patients has been fully noticed (50, 51). It has been
demonstrated that MIF activates macrophages and plays
specific roles in facilitating acute inflammatory responses
through the promotion of the expression and secretion of
several pro-inflammatory cytokines (i.e., tumor necrosis
factor-alpha, interferon-gamma, interleukin 1 beta,
interleukin 6, interleukin 8, macrophage inflammatory
protein-2, cyclooxygenase-2, nitric oxide, and some
products of the arachidonic acid pathway) (52).

Additionally, MIF stimulates T helper type 1 immune

cell activity and amplification of macrophage functions,
thereby regulating the production of acute-phase
proteins, fever, and severe inflammation (52). This
factor also counteracts the anti-inflammatory activity
of glucocorticoids. Therefore, it seems reasonable that
MIF might be a key point of COVID-19 pathogenesis. The
MIF stands at the edge of several mechanisms involved
in COVID-19 and gives a better picture of COVID-19
pathogenesis. The MIF exhibits a central role in tissue
healing and pulmonary fibrosis (18, 53), chemotaxis,
cytokine release, innate immunity, B cell and T cell
activation, anticorticosteroid effect, vasculopathy, and
other systemic and local responses. The main mechanisms
by which MIF might be involved in severe conditions of
COVID-19 patients remain to be fully discussed. Several
biomarkers have been implemented in the management
of COVID-19 (54); however, still additional effective
diagnostic tools might help physicians to improve the
clinical care of COVID-19 patients (55).

The MIF release and its prognostic value have been
noted in other viral respiratory infections, such as
influenza and respiratory syncytial virus (RSV) (56-58).
In addition to lung damage, MIF has been blamed for
being involved in vasculopathy and endothelial damage
associated with the dengue virus (59). The increased levels
of MIF have been correlated with prognosis and early
mortality risk among septic shock patients (60).

Taken together, the results of the present study and
previous investigations propose MIF as a biomarker in
the management of COVID-19 patients. In addition, these
observations highlight MIF in the pathophysiology of
COVID-19. Meanwhile, due to the significant role of MIF in
distinct pathways leading to disease exacerbation, clinical
trial studies to investigate the possible therapeutic effects
of MIF inhibitors and death prevention among severe
COVID-19 patients might be beneficial. An additional
uncontrolled factor is the possibility that nutrition
status or medications could affect the results; however,
the subjects with unfulfilled inclusion criteria (e.g.,
comorbidities, autoimmunity, and cancer) were ruled out
to restrict the effect of confounding factors.

5.1. Conclusions

The current study and previous studies are consistent
in increasing the amount of MIF during COVID-19 infection,
especially among severe patients, and this can open
one of the important and effective paths in COVID-19
pathogenesis and subsequently possible therapeutic
approaches such as MIF inhibitors. However, it should be
noted that a cutoff value could be misleading. Further
studies are recommended to assess the pathophysiologic
pathways in which MIF participates during COVID 19

6 Arch Clin Infect Dis. 2023; 18(2):e133714.
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and the effects of anti-MIF drugs on the improvement of
patient conditions and reduction of mortality rates in
possible upcoming peaks of infection.
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