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Abstract

Background: The opportunistic human pathogen, Pseudomonas aeruginosa, is a critical cause of nosocomial infection with high
morbidity and mortality rate. Eradication of P. aeruginosa has been troublesome due to its high capacity to develop strong multidrug
resistance (MDR) strians.
Objectives: The purposes of this study were to define the pattern of antimicrobial sensitivity, typing, and prevalence of
metallo-β-lactamase (MBL) and detect the oprD, blaCTX-M, blaSHV, blaTEM, blaIMP, blaNDM, and blaVIM genes among clinical isolates of
P. aeruginosa collected from Tehran hospitals.
Methods: Clinical isolates were collected from hospitalized children in selected hospitals in Tehran from March 2019 to February
2020. The antimicrobial susceptibility test (AST) was performed by the Kirby-Bauer disk diffusion method. Composed disc diffusion
tests were performed to screen MBL production. MBLs and extended-spectrumβ-lactamases (ESBLs) encoding genes were amplified
by polymerase chain reaction (PCR). Amplification of the oprD gene were performed for carbapenem-resistant P. aeruginosa.
Random amplified polymorphic DNA (RAPD-PCR) Fingerprinting was used for genotyping the isolates.
Results: A total of 80 P. aeruginosa isolates were collected. Isolates were resistant to cefepime 35%, ceftazidime 20%, ciprofloxacin
22%, tazobactam 16%. Out of 80 isolates, 16 were carbapenems-resistant. Gentamicin, tobramycin, and amikacin had the highest
susceptibilities of 85%,90%, and 90%, respectively. OprD, blaCTX-M, blaSHV, and blaTEM genes were detected in 80(100%), 36(45%), 22
(27.5%), 17 (21.25%), and 1 (1.25%) blaIMP and blaNDM genes, respectively. In this study, the blaVIM gene was not detected in the isolates,
and no mutation was observed regarding the presence of an insertion element in the OprD gene. Isolates were divided into 13 and
14 common and single types, respectively.
Conclusions: P. aeruginosa isolates showed a high rate of β- lactamases production, and the prevalence of carbapenem-resistant,
which can be related to different mechanisms, was alarming. On the other hand, the results demonstrated that there was
beta-lactam antibiotic resistance and clonal spread among the hospital population. This shows the necessity of molecular
surveillance in tracking beta-lactamase-producing strains.
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1. Background

Pseudomonas aeruginosa (P. aeruginosa) has long been
recognized as an opportunistic bacteria and a leading
cause of severe hospital-acquired infections such as
endocarditis, septicemia, urinary tract infection (UTI),
ventilator-associated pneumonia (VAP), skin, surgical-site
infections and eye and ear infections (1, 2). P. aeruginosa

inflicts high morbidity and mortality rates, especially
among infected burn patients (3, 4).

Treating infections caused by P. aeruginosa has
become a worldwide challenge due to the potential of
this bacterium to develop resistance to almost all available
therapeutic agents (5). Unfortunately, the improper and
irrational use of antibiotics has increased the prevalence
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of third- and fourth-generation cephalosporins and
carbapenems-resistant strains (6, 7). It was previously
thought that carbapenems were the last-line therapeutic
drugs against multidrug-resistant (MDR) P. aeruginosa
infections (8, 9). Carbapenem-resistant P. aeruginosa has
become a considerable threat to public health worldwide
(10). The World Health Organization (WHO) and the
Centers for Disease Control and Prevention (CDC) consider
carbapenem-resistant P. aeruginosa as one of the strains
that require novel therapeutic approaches (10, 11).

Generally, acquired, intrinsic and adaptive resistance
are the main coping mechanisms of P. aeruginosa
against antibiotics (12). Carbapenem resistance of P.
aeruginosa is due to a combination of factors facilitating
the production of carbapenemases enzymes such as
serine, carbapenemases, and metallo-ß-lactamases (MBLs)
(New Delhi metallo-β-lactamase [NDM], imipenemase
[IMP], and Verona integrin-encoded metallo-β-lactamase
[VIM]), and deficient outer membrane porin D (OprD) (13).
blaIMP and blaVIM genes are the most clinically important
beta-lactamase classes. blaNDM-1 producing strains are
resistant to a wide range of antibiotics and are becoming
the foremost threatening carbapenemase (14, 15). The
specific porin OprD facilitates the diffusion of small
peptides, basic amino acids, and carbapenems into the
cell (16, 17). The absence of OprD in P. aeruginosa leads to
moderate resistance to imipenem (17, 18). These bacteria
also produce plasmid-mediated enzymes that hydrolyze
the oxyimino β lactams and the monobactams called
expanded spectrum beta-lactamases (ESBLs). ESBLs confer
a powerful resistance against ß-lactam antibiotics and
third-generation cephalosporins such as ceftazidime,
ceftriaxone, and cefotaxime inactive (19).

2. Objectives

The purposes of this study were to determine the
antimicrobial susceptibility patterns and prevalence of
MBLs, typing the isolates, and detect the oprD, blaCTX-M,
blaSHV, blaTEM, blaIMP, blaNDM, and blaVIM genes among
clinical isolates of P. aeruginosa collected from several
hospitals of Tehran.

3. Methods

3.1. Ethics Approval

This study was approved by the Ethics Committee
of Shahid Beheshti University of Medical Sciences
“IR.SBMU.MSP.REC.1400.481.” The patients’ personal
information was not collected or included to maintain
confidentiality.

3.2. Clinical Samples and Bacterial Identification

Eighty non-duplicate clinical isolates of P. aeruginosa
were collected from children hospitalized in Tehran
Hospitals from March 2019 to February 2020. Laboratory
identification of isolates was performed by standard
biochemical tests. All isolates were preserved in trypticase
soy broth (Merck) supplemented by 20% glycerol at –70°C.
P. aeruginosa ATCC 27853 was used for quality control.

3.3. Antimicrobial Susceptibility Testing

Antibiotic susceptibility of each strain to ceftazidime
(30µg), cefepime (30µg), imipenem (10µg), ciprofloxacin
(5 µg), piperacillin/tazobactam (100/10 µg), amikacin
(30 µg), gentamicin (10 µg), tobramycin (30 µg), were
determined by the Kirby-Bauer disk diffusion, following
the recommendations of the Clinical and Laboratory
Standard Institute (CLSI) (20).

3.4. Screening of Metallo-β-lactamase

All P. aeruginosa isolates were evaluated for production
of metallo-β-lactamase (MBL) by the combined disc
diffusion test (21, 22), which was performed by imipenem
and meropenem alone and in combination with
ethylenediaminetetraacetic acid (EDTA) 0.5 M. A difference
in zone diameter between discs alone and disc + EDTA
0.5 M ≥ 7 mm was explicated as a positive result for MBL
production.

3.5. DNA Extraction

P. aeruginosa isolates were cultivated on Mueller
Hinton Broth (Merck, Darmstadt, Germany) for 18 h at 37°C,
and genomic DNA was extracted using the boiling method
(23). DNA Concentration was evaluated by the Nanodrop
instrument (WPA Biowave II Nanospectrophotometer,
USA).

3.6. PCR Technique

The presence of extended-spectrum β-lactamases and
MBLs genes was examined using the primers presented in
Table 1. PCR was executed in a final volume of 25µL with 12.5
µL of Taq DNA Polymerase 2x Master Mix RED (Amplicon,
Denmark; Cat. No.: A190303), including 1 × PCR buffer,
three mmol/L MgCl2, 0.4 mmol/L dNTPs and 0.08 IU Taq
DNA polymerase, one µL of 10 pmol of each primer and
7.5 µL of sterile distilled water. PCR program was set as
follows: initial denaturation at 94°C for 5 min, followed by
36 cycles of 94°C for 1 min, and annealing at 54°C to 60°C,
relevant to each primer for 45 s and final extension at 72°C
for 5 min. The PCR products were electrophoresed on a 1%
agarose gel.
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Table 1. List of Primers Used in This Study

Primer’s Sequences (5’ - 3’) Expected Size of
Amplicon (bp)

blaIMP 587

F GAAGGCGTTTATGTTCATAC

R GTAAGTTTCAAGAGTGATGC

blaVIM 390

F GATGGTGTTTGGTCGCATA

R CGAATGCGCAGCACCAG

blaNDM 621

F GGTTTGGCGATCTGGTTTTC

R CGGAATGGCTCATCACGATC

blaTEM 972

F TCGGGGAAATGTGCGCG

R TGCTTAATCAGTGAGGCACC

blaSIHV 861

F TTAGCGTTGCCAGTGCTC

R GGTTATGCGTTATATTCGCC

blaCTX-M 544

F TTTGCGATGTGCAGTACCAGTAA

R CGCTATCGTTGGTGGTGCCATA

OprD 1329

F ATGAAAGTGATGAAGTGGAG

R CAGGATCGACAGCGGATAGT

RAPD CCGCAGCCAA

3.7. Random Amplified Polymorphic DNA Fingerprinting

Random amplified polymorphic DNA (RAPD-PCR) was
conducted for all samples in accordance with Vanerkova
described method (24). The total volume of the PCR
reaction was 25µL, which included 12.5µL of 2x Master Mix,
5 µM of primer, and 1 µL of DNA extract. Thermal cycling
was conducted with an initial denaturation at 94°C for 15
min, followed by 25 cycles of 94°C for 1 min, 55°C for 2 min,
63°C for 10 min, and concluded by a final extension of 65°C
for 18 min. The PCR productions were loaded on the 1.5%
agarose gel, and the results were analyzed.

4. Result

4.1. Patients and Bacterial Isolates

A total of 80 P. aeruginosa isolates were collected from
hospitalized children in Tehran Hospitals. Among the 80
isolates obtained, 26 were from boys, 54 were from girls,
and all were between 2 and 15 years old.

4.2. Antibiotic Susceptibility Profile

The resistance rate of P. aeruginosa isolates to the
tested antibiotics was 28 (35%) to cefepime, 20 (25%)
to ceftazidime, 18 (22%) to ciprofloxacin, 13 (16%) to
tazobactam, 12 (15%) to gentamicin, 8 (10%) to tobramycin
and amikacin. Out of 80 isolates, 16 (20%) were
carbapenems-resistant.

4.3. Metallo-β-lactamase

Phenotypic and genotypic assessment of MBLs showed
that among 16 isolates that were resistant to imipenem,
four could produce MBL genes.

4.4. Prevalence of Resistance Genes

The existence of OprD, blaCTX-M, blaSHV, and blaTEM genes
was detected in 80 (100%), 36 (45%), 22 (27.5%), 17 (21.25%),
and 1 (1.25%) blaIMP, blaNDM genes, respectively. In this
study, the blaVIM gene was not detected in the isolates, and
no mutation was observed regarding the presence of an
insertion element in the OprD gene (Table 2).

4.5. Random Amplified Polymorphic DNA Fingerprinting

All 80 P. aeruginosa isolates were subjected to random
amplified polymorphic DNA (RAPD-PCR) fingerprinting to
appraise the genetic diversity. Isolates were partitioned
into 13 common types (CT) and 14 single types (ST).

5. Discussion

P. aeruginosa is an opportunistic pathogen and one of
the main causes of acquired and nosocomial infections
with limited therapeutic options. Furthermore, treating
infections caused by this bacterium is extremely difficult
and challenging (25, 26).

Antibiotic susceptibility investigation in this study
demonstrated that the resistance levels amongst P.
aeruginosa isolates as follows: cefepime (35%), ceftazidime
(25%), ciprofloxacin (22%), tazobactam (16%), gentamicin
(15%), amikacin (10%), and tobramycin (10%). The high
prevalence of resistance rate to beta-lactam agents in this
study was related to the presence of ESBLs, such as blaTEM,
blaSHV, and blaCTX-M. Results demonstrated that nine
blaCTX-M and blaSHV-positive ones could be identified
among ceftazidime-resistant strains. Nonetheless,
15/28 cefepime-resistance isolates were ESBL producers.
Therefore, additional resistance mechanisms or enzymes
such as ESBLs, AmpC, and MBLs may have played a role in
the resistance. In the study conducted by Shahbazzadeh
et al., approximately 50% of isolates were resistant to
third-generation cephalosporins. Among 51 isolates
resistant to ceftazidime, 5 were ESBL producers (27).
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Table 2. Prevalence of Resistance Genes Among 80 P. aeruginosa Strains a

IMP VIM NDM TEM SHV OprD CTX-M

1 (1.25) 0 1 (1.25) 17 (21.25) 22 (27.5) 80 (100) 36 (45)

a Values are expressed as No. (%).

Moreover, Ali et al. showed that in 23.91% and 6.52% of
samples, ESBLs and MBLs were detected, respectively (28).

According to the obtained results, aminoglycosides
demonstrated low rates of resistance. This is consistent
with the findings by Ahmadian et al. (2021), who similarly
reported low levels of P. aeruginosa resistance to amikacin
(13%), gentamicin (32%), and tobramycin (33%) in various
clinical cases in Iran (29). Khan and Faiz also reported that
low proportions of P. aeruginosa isolates were resistant to
gentamicin (11.6%) and amikacin (7.4%) in Saudi Arabia (30).
These low resistances against amikacin and tobramycin
may be due to their lower prescription in Iranian hospitals.
Similarly, it was reported in Kashfi et al.’s study that
amikacin was more effective than gentamicin against P.
aeruginosa isolated in burn patients (31). In contrast, the
resistance rate to aminoglycosides is high in some regions
and countries, and some authors believe that P. aeruginosa
tends to show intrinsic resistance to aminoglycosides
(32). For instance, in India, the resistance rates to
amikacin, gentamicin, and tobramycin were 50%, 67%,
and 66%, respectively (33). Generally, based on antibiotic
resistance studies, it can be concluded that the rates
of resistance in P. aeruginosa isolates are higher than
before, which may be due to different reasons such as the
difference in resistance mechanism, the irresponsible use
of antibiotics in prevention, the difference in sample type
and the topographical locations, and hygienic condition
and hospitals care (34).

Carbapenems such as imipenem and meropenem
are effective antimicrobial agents against P. aeruginosa
infections. However, carbapenem resistance is emerging
worldwide. Among the present study’s 80 clinical isolates
of P. aeruginosa, 20% were resistant to carbapenems. The
resistance range of P. aeruginosa to imipenem in other
studies in different regions was 5.5 to 62.5% (25, 35-38).
Resistance to carbapenems in P. aeruginosa occurs via
several mechanisms. Producing carbapenemase, the main
mechanism of carbapenem resistance in Iran, is one of the
main mechanisms (39).

Acquired MBLs such as IMP, NDM, and VIM are the most
common, first detected in the early 1990s (40, 41). These
genes are carried by genetic elements, including plasmids
and integrons (42). PCR assays targeting carbapenemase
and MBL encoding genes were negative in all 16 isolates.
However, MBL was positive in 4 isolates’ phenotypic

assay. Kalluf et al. reported 85.5% positive strains with
phenotypic results for MBL (43). blaIMP and blaNDM were
detected in one out of 28 cefepime-resistant strains. Our
data support the findings of Shariati et al. from Iran,
which demonstrated that MBL and carbapenemase were
negative in carbapenem-resistant strains (4). It seems that
the resistance to imipenem in these bacteria depends on
mechanisms other than the production of carbapenemase
enzyme. As reported in other studies, the frequency of
MBLs was approximately 8.2 to 35.1% (44-46). Contrary
to some reports, VIM was the predominant MBL gene
associated with the outbreaks due to MBL-producing P.
aeruginosa (47, 48).

The deficiency of OprD due to substitutions, deletions,
insertions, or mutations have also been considered as
another mechanism of carbapenem resistance (49). In
the current study, PCR assay using the OprD - particular
primers demonstrated that all isolates were positive for
OprD amplification. Still, none of the imipenem-resistant
P. aeruginosa isolates harbored an insertions element in
the OprD gene. As shown by several studies, alteration
of OprD increases the MIC for imipenem but not other
carbapenems (38, 50). A different study by Wolter et al.
showed the presence of IS elements within the OprD gene,
which was not observed in this study (51). Kiani et al.
reported one base IS element among five resistance strains
(25). An investigation Performed by Shen et al. revealed
that 136 out of 141 (96.5%) of the resistant isolates had
mutations. Among them, only 6 strains had IS, and the
remains had other types of alteration (50). These reports
are contrary to our results. It is possible that mutations or
deletions occurred in our strain. Various IS elements have
been recognized worldwide that may inactivate the OprD
gene, such as ISPpu21 and ISPa1328 in Iran, ISPa26 in South
Africa, ISPa46 and ISPa1328 in France, ISRP10 in Croatia,
ISPa133 in Spain, ISPa1328 and ISPre2 in China, ISPa150 in
Russia, and ISPa8, ISPa1635, and ISPa1328 in the USA (4,
52-54). RAPD-PCR was performed for typing all P. aeruginosa
isolates. In typing results, 13 CT and 14 different ST were
detected. Notably, all carbapenems-resistant isolates were
clonally related. Different distributions of genotypes have
been shown in several studies. For example, Vaez et al. had
54 clinical isolates with 39 different groups, and Salimi et
al. observed eight different groups from 29 isolates (55, 56).
The difference in the obtained results may be due to the

4 Arch Clin Infect Dis. 2023; 18(2):e134837.



Goudarzi H et al.

difference in the sources of P. aeruginosa that can lead to
colonization of the host.

5.1. Conclusions

Resistance to most anti-pseudomonal antibiotics
has become an emerging issue worldwide. Carbapenem
resistance is a critical problem that develops due to
several mechanisms. To sum up, we analyzed the
MBLs and ESBLs production in P. aeruginosa strains.
The findings of this study revealed that the prevalence
of carbapenem-resistant strains among hospitalized
children is increasing. We identified that most of the
isolates were harboring ESBL genes. On the other hand, the
results demonstrated that there was beta-lactam antibiotic
resistance and clonal spread among hospitalized patients.
This indicates the necessity of molecular surveillance in
tracking beta-lactamase-producing strains.
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