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Abstract

Cholera outbreaks caused by the bacterium Vibrio cholerae present a significant global health challenge, with a notable increase

in cases recently reported. The disease is characterized by severe watery diarrhea, leading to dehydration and potential fatalities

if not promptly addressed. Transmission occurs through contaminated food and water sources, underscoring the importance

of water sanitation and hygiene measures to prevent outbreaks. Limited healthcare access and inadequate reporting systems

make estimating cholera cases and deaths challenging. Antibiotic resistance is also a concerning issue, necessitating the

development of new treatment options. Prompt laboratory diagnosis is essential, with rapid diagnostic tests and PCR showing

promise for pathogen detection. Treatment involves fluid replacement and appropriate antibiotic use to reduce disease severity

and transmission. Oral cholera vaccines offer preventive measures for high-risk individuals during outbreaks. To combat the

escalating cholera epidemic and save lives, a comprehensive approach, including improved water sanitation, early detection,

and timely treatment, is crucial.
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1. Context

Cholera outbreaks are caused by the bacterium Vibrio

cholerae, serotypes O1 or O139. The disease manifests as

sudden severe watery diarrhea that could lead to serious

dehydration and death if not treated with oral or

intravenous hydration solutions. Vibrio cholerae is easily
transmitted via the fecal-oral route and can rapidly

spread to multiple communities. In more severe cases, it

can cross national borders and cause a far-reaching

epidemic surge. We are currently witnessing an

unprecedented rise in cholera epidemics, evident in the
29 countries reporting cholera outbreaks during 2022,

compared to fewer than 20 countries reporting them

throughout the last five years (1, 2). The urgency of the

situation is further underscored by the shift in vaccine

strategy from a standard 2-dose regimen to a one-dose
approach due to vaccine shortages. The global disease

trend indicates more numerous, severe, and widespread

outbreaks, necessitating stronger prevention and

treatment interventions. Herein we highlight the recent

epidemiology, diagnosis, and treatment alternatives

that could help combat this persistent plague.

1.1. Epidemiology

The earliest recorded outbreak of cholera dates back

to 1817 in the Ganges Delta of India (3). Since then,
cholera has spread through trade routes and caused

seven different pandemics between 1817 and 1961, with
the last still ongoing and affecting countries in Africa,

Asia, and South America (3). According to the latest
World Health Organization (WHO) estimates, 2.86

million cholera cases occur annually in endemic

countries, with 95,000 dying from the disease. However,
precise estimates remain challenging due to the lack of

standard reporting of cholera cases and deaths and the
lack of healthcare access in countries affected by wars,

such as Yemen and Syria (1). This is particularly

important, considering that 84% and 41% of all cases and
deaths linked to cholera were in Yemen in 2017 (2). Based

on data from the European Centre for Disease
Prevention and Control, countries with 100 or more
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reported cases per 100,000 persons between January

2022 and January 2023 included Afghanistan,

Bangladesh, Lebanon, Malawi, Pakistan, and Syria (4).
Figure 1.

Figure 1. Choropleth Map of Cholera Incidence by Country, according to the
European Center for Disease Prevention and Control

1.2. Transmission and Risk Factors

Vibrio cholerae, the causative agent of cholera, is

primarily transmitted through the ingestion of

contaminated food or water, although person-to-person

transmission can occur. According to the World Health

Organization (WHO), the majority of cholera cases are
associated with contaminated water sources, such as

wells, rivers, and lakes, or with food prepared with

contaminated water. This is evident in the quality of

drinking and domestic water sources and springs in

cholera-prone Ugandan communities, which were
found to be outside the WHO-recommended values (5).

Household hygiene can be an important factor in

mitigating cholera transmission, especially with recent

evidence suggesting that interventions targeting case-

centered and within-household transmission are most
effective (6).

V. cholerae thrives in certain environmental

conditions, including alkaline pH, temperatures up to

30 degrees C, and 15% salinity, often found in brackish

water in estuaries and coastal regions. Climate events

such as rainfall can impact the dynamics of cholera

spread. For instance, the El Niño phenomenon,

characterized by the warming of surface water in the

eastern and central equatorial Pacific Ocean, caused

rainfalls and floods and was linked to the emergence of

cholera in specific districts of Uganda (7). Nevertheless,

drought- and famine-affected areas were also struck by

cholera. This rather complex dichotomy was observed in

Niger, where cholera surged during severe droughts in

2004 and resurged in 2006 following excessive rainfalls

(8). Moreover, the disruption of sanitation systems, as in
countries affected by wars, has resulted in cholera

outbreaks. These countries include the Democratic
Republic of the Congo, Somalia, South Sudan, Sudan,

Syria, Yemen, and Zimbabwe (9, 10). Crowded camps and

slums, where open defecation is common and pit
latrines are scarce, are also high-risk areas for cholera

outbreaks.

Host factors also play an essential role in

determining the risk of V. cholerae infection and its

symptoms. Lower socioeconomic conditions and

extremes of age are frequently associated with higher

infection risk (11). Other host factors impacting infection

risk and severity include diet and immunity.

Malnutrition has been shown to be associated with an

increase in the duration of diarrhea and hospitalization.

Furthermore, protein-energy malnutrition reduced the

protective efficacy of an orally administered cholera

vaccine in a mouse model (12). Protection against

cholera can be provided by breastfeeding due to breast

milk antibodies and glycans, which have been shown to

exert a vibriocidal immune response and reduce the risk

of severe cholera (13).

Unexpectedly, reduced host immunity, as seen in
people suffering from acquired immunodeficiency

syndrome (AIDS), did not affect the severity of cholera

but might be associated with a higher risk of infection.

This was exemplified in Port-au-Prince, Haiti, where the

prevalence of HIV infection in patients with culture-
confirmed cholera was four times higher than the adult

prevalence in the region (14).

1.3. Pathogen and Pathogenesis

Vibrio choleraeis a motile, gram-negative, rod-shaped

bacterium belonging to the Proteobacteria phylum.

Vibrio choleraehas more than 200 serogroups that vary

in virulence, epidemiology, and evolutionary lineages.

The serological classification of cholera strains is based

on differences in the sugar composition of the heat-

stable surface somatic "O" antigen. In fact, the majority

of V. cholerae serogroups are not pathogenic, with only

two groups, 'O1' and 'O139', being associated with cholera

epidemics and pandemics (15). The two biotypes of V.

cholerae O1, namely classical and El Tor, have distinct

roles in cholera epidemiology. While the classical

biotype is associated with the first six pandemics, the

ongoing seventh pandemic is attributed to the El Tor

biotype (16).

The infectious dose of these V. cholerae species varies

depending on a multitude of host, pathogen, and
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environmental conditions. Animal models show

different infectious doses when compared to human

studies, with the latter requiring doses of 108 - 1011 to

produce consistent colonization. Despite acid resistance

mechanisms, adding a bicarbonate buffer to neutralize

gastric acidity has been found to reduce the infectious

dose in humans (17).

Vibrio cholerae is known to be acid-resistant, utilizing

an acid tolerance response (ATR) when exposed to
human gastric acids (18). The ATR mechanism of V.

cholerae involves several physiological changes that

allow the bacterium to maintain its structural integrity
and metabolic activity in low pH environments. For

example, V. cholerae alters its gene expression,
enhancing the expression of the lysine decarboxylase,

CadA, under conditions of low pH and high lysine

concentrations. CadA, among other amino acid
decarboxylases, consumes protons in their enzymatic

reactions, thus maintaining internal pH (19).

Similar to environmental pH, the presence of bile

acids represents a major component in virulence

regulation for V. cholerae among other enteropathogens

(20, 21). ToxR, a transmembrane transcription factor,

possesses a periplasmic domain serving as an

environmental sensor for bile acids (22). Positioned

within a regulatory cascade, ToxR triggers the

expression of toxin coregulated pilus (TCP) and cholera

toxin (CT) (23). CT, housed within the cholera toxin

bacteriophage (CTXϕ), falls under the direct control of

ToxT (24). Research on the impact of bile acids has

yielded mixed results, with some studies suggesting a

repressive effect on ToxT-dependent transcription of CT

and other virulence factors (25, 26). Conversely, bile

acids have been shown to induce ToxR and CT

transcription through a ToxT-independent mechanism

(27, 28).

The influence of bile acids may also be subject to

modulation by calcium concentrations. In the presence

of established bile acid inducers of tcpA, the pilus

subunit, a notable increase in tcpA expression was

observed with elevated calcium levels, while this effect

was mitigated upon calcium chelation within murine

intestines (29). Another abundant molecule in the

intestines is bicarbonate, which has been observed to

enhance ToxT binding affinity to virulence gene

promoters when at high levels, thus serving as an in-vivo

signal modulator, particularly given its high

concentration near the epithelium (30). In summary, V.

cholerae adeptly responds to environmental cues like

gastric acids, bile acids, and calcium, modulating its

virulence and pathogenesis.

Vibrio cholerae leverages flagellar motility to

penetrate the mucus layer and establish intestinal

colonization. The complex transcriptional changes that

follow are mediated by the production of ToxT. TCP is

encoded in the V. cholerae pathogenicity island 1 (VPI-1)
and plays a crucial role in attaching V. cholerae to human

intestinal Caco-2 cells (31) (Figure 2). CT, encoded in the

cholera toxin bacteriophage (CTXϕ), comprises a single

A subunit (CTA1) and five B subunits (CTB1-5) arranged

hexamerically. Subunit B binds to the ganglioside GM1
cell surface receptor on human jejunal epithelial cells,

entering the cytoplasm through receptor-mediated

endocytosis and retrograde transport from the

endoplasmic reticulum (32). The A subunit catalyzes ADP

ribosylation of adenylate cyclase (AC), leading to
increased AC activity and intracellular cAMP

concentration. Elevated cAMP activates protein kinase A
(PKA), which phosphorylates the Cystic Fibrosis

Transmembrane Conductance Regulator (CFTR),

enhancing chloride secretion into the intestinal lumen
(33). A single intraperitoneal injection with CFTR

inhibitors belonging to the Thiazolidines chemical class
reduced cholera-induced fluid secretion in mice by

more than 90% over 6 hours (34). Another target of the

CTA-PKA pathway is the inhibition of the Na+/H+
exchanger 3 (NHE3), thus increasing Na+ in the

intestinal lumen (35). The combination of elevated
sodium and chloride expands luminal fluid volume,

resulting in watery diarrhea.

Another facet of cholera pathogenesis includes the

formation of microcolonies and biofilms, along with

quorum-sensing signaling systems and regulatory

networks. Vital proteins for these processes feature the

type IV pilus and TCP among others. Microcolony and
biofilm formation are favored in the environmental

conditions of low cell density, which are enhanced by

CT-induced augmentation of luminal fluid volume. The

low cell density is also crucial for pathogenicity and

immune evasion as high cell density induces quorum
sensing that activates HapR, a transcription factor.

Regarding pathogenicity, HapR binds to promoters to

repress the expression of CT and TCP. Regarding

immune evasion, HapR reduces bacterial tryptophan

uptake, thus providing host enterocytes with precursors
for serotonin synthesis that activate innate immune

signaling (36). In brief, Vibrio cholerae exploits flagellar

motility, ToxT-mediated transcriptional changes, TCP,

and CT to colonize the intestine, induce diarrhea, and

evade immune detection through microcolony and
biofilm formation.
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Figure 2. The internalization of cholera toxin and its pathogenic effects

1.4. Laboratory Diagnosis

Diagnosing cholera presents challenges due to the

similarity of symptoms with many other causes of

gastroenteritis. Limited facilities and supplies,

especially in underdeveloped areas where cholera is

prevalent, exacerbate these challenges. Traditional

culturing methods for diagnosis are time-consuming,

which is problematic given the rapid and severe nature

of cholera infections that demand prompt intervention.

Consequently, clinical diagnosis is often relied upon

during diarrheal illness outbreaks. Additionally,

laboratory findings such as hypokalemia, hypocalcemia,

metabolic acidosis, and isonatremic dehydration can

provide supporting evidence for cholera before

confirmatory tests are reviewed (37).

As the recent harsh cholera outbreaks inspired the

current review, we will first shed light on effective

diagnostics in such settings. Rapid diagnostic tests

(RDTs) are considered a valid method for an initial alert

of a cholera outbreak. Antibody-based cholera RDTs

work by detecting V. cholerae's lipopolysaccharides (LPS)

within 15 to 30 minutes in a stool sample. In a meta-

analysis involving 20 studies and 8 distinct commercial

rapid tests, the combined sensitivity relative to bacterial

culture, the gold standard for diagnosis, was 90% (95%

CI, 86-93), with a specificity of 86% (95% CI, 81-90) (38).

The results generated by RDTs are not as specific and

sensitive as those generated by polymerase chain

reaction (PCR), bacterial culture, or darkfield

microscopy (39). However, some studies found RDTs'

accuracy, particularly those with enrichment in the

alkaline peptone water (APW) step, comparable to that

of stool culture when using PCR as a reference (40).

Efforts should be placed into improving RDTs to

make them effective point-of-care (POC) testing tools in

developing countries that are susceptible to recurrent

cholera outbreaks and lack sufficient microbiological

laboratories and expertise.

1.5. Clinical Features

Depending on the inoculum size and the individual's

susceptibility, the incubation period of cholera ranges

from several hours to three to five days. The most

distinctive clinical feature of cholera is acute watery

diarrhea. As cholera may be confused with other

diarrheal diseases, severe cholera, also called cholera

gravis, stands out with its characteristic profound and

rapid loss of fluids, which typically has a fishy odor.

Fluid loss may reach as high as one liter per hour in

adult patients and 20 ml/kg/hour in children (41).

Another unique feature of severe cholera diarrhea is the

passage of profuse rice-water stool (42).

The resultant hypovolemia is the most lethal sequela

of the diarrhea, which may manifest as hypotension,

tachycardia, dry mucous membranes, dizziness,

decreased urine output, and in more severe conditions,

shock, and death. This was evident in the early stages of

the cholera epidemic in Haiti when the median time

between the onset of symptoms and death in

individuals who died before presentation to a cholera

treatment center was 12 hours (43). Other

gastrointestinal manifestations of cholera infection are

abdominal cramping and vomiting, which may begin

before or after the onset of diarrhea.

Significant complications of this illness include
metabolic acidosis, which may occur due to the loss of

stool bicarbonate or lactic acidosis from poor perfusion.
In addition, pneumonia may occur due to vomiting

accompanied by aspiration. The latter is considered

frequent comorbidity in children with a high mortality
rate (44).

1.6. Treatment

1.6.1. Fluid Replacement

Replacing lost fluids and electrolytes constitutes the

cornerstone of cholera treatment. The main method of

achieving this is through oral rehydration solution

(ORS). The currently utilized WHO standard ORS

formulation, established in 2002, is glucose-based

reduced osmolarity (sodium 75 mEq/L, glucose 75

mmol/L, and osmolarity of 245 mOsm/L), as sodium is

better absorbed when glucose is present (32).

Rehydration takes place in two steps: replacement and
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maintenance. Through clinical assessment and WHO

guidelines, the degree of dehydration and the amount

of fluids needed are determined (45).

Preferably, fluids are administered as ORS rather than

intravenously due to lower costs, less invasiveness, and

fewer emergency department revisits (46). However, in

the case of profound ongoing stool losses, termed high
purging (≥ 15 mL/kg per hour; seen in 3-5% of patients),

failure of ORS attempts, and severe dehydration,

intravenous fluids become indicated (47, 48). Neutral

amino acids were found to increase the intestinal

potential to absorb sodium and water ions, but there is
insufficient evidence to qualify them as a standard ORS

therapy (49). On another note, a review of thirty-five

trials showed that patients treated with rice-based ORS

experienced fewer and shorter diarrhea bouts than their

glucose-based ORS-treated counterparts (50).

1.6.2. Antibiotics and Antibiotics Resistance

When treating cholera with moderate to severe

dehydration, antibiotic administration becomes

warranted to (1) reduce the time and severity of the

disease by up to 50% and (2) limit the transmission of

the viable organism to 1 - 2 days (51). Antibiotic

administration comes after the initial fluid deficit is

replenished, typically in about 4 hours. Antibiotics are

chosen according to the patient’s condition and the

antibiotic resistance pattern.

Antibiotic resistance is a major obstacle in the

treatment of V. cholerae infection. The mechanisms of

antibiotic resistance development include the overuse

and misuse of antibiotics in both human medicine and

the animal industry, efflux pumps, genetic mutations,

and horizontal gene transfer (52). A recent meta-analysis

showed that previously utilized bacterial cell wall

inhibitors, such as aztreonam, cefepime, and imipenem,

remain efficient with almost non-existent resistance

(53). Other available antibiotic options that could work

against cholera include tetracyclines, doxycycline,

fluoroquinolones, and macrolides.

Tetracyclines remain a primary choice in treating

cholera infection. They have comparable outcomes with

doxycycline in terms of stool output, duration of

diarrhea, and the requirement for ORS, according to a

study in Bangladesh (54). However, high resistance to

these two classes has been observed, requiring their use

to be limited to settings where ongoing surveillance

shows most strains are susceptible to those classes.

Consistently, the high use of ciprofloxacin due to its

superior effectiveness compared to tetracyclines has led
to a dramatic rise in fluoroquinolone resistance (55).

Regarding macrolides, azithromycin and erythromycin

have shown clinical and bacteriological efficacy. In some

instances, azithromycin was superior to

fluoroquinolones, yielding better clinical outcomes (56,

57).

Considering the geographic variation in V. cholerae

antibiotic resistance patterns is vital. A recent meta-

analysis revealed varied rates based on geography, with
0% resistance to novobiocin and ofloxacin in Africa,

gatifloxacin and levofloxacin in Asia, and ciprofloxacin

in North America, thus necessitating the monitoring of

regional and local antibiotic resistance patterns and the

use of derived treatment guidelines (58).

1.6.3. Vitamins and Minerals

According to WHO recommendations, a 14-day course

of zinc supplementation for children aged 6 months to

5 years can aid in shortening the duration of diarrhea.

This is supported by the results of a meta-analysis

including 33 trials (59). Contrary to WHO guidelines of

20 mg per day, recent research suggests that half the

dose has a lower risk of vomiting but comparable

efficacy (60).

Additionally, vitamin A supplementation is

warranted when deficiency symptoms accompany acute

diarrhea. Furthermore, in resource-limited areas, the

routine administration of vitamin A has been associated

with reduced morbidity and mortality (61).

1.7. Prevention

The prevention of cholera outbreaks heavily relies on

the development of safe and effective water sanitation

systems. The biggest limitation to the development of

these systems is the high capital cost and extensive

resources required to build the infrastructure. A living

example of the effectiveness of these infrastructure

upgrades in preventing cholera outbreaks is London in

the 1800s, where the pioneering epidemiological work

of John Snow was followed by the design and

construction of a system for sewage disposal (62). In

fact, Target 7c of the United Nations' Millennium

Development Goals was to halve the proportion of the

population without sustainable access to water and

basic sanitation by 2015. Despite significant progress in

that capacity, an estimated 1.8 billion people worldwide

still drink water from sources that are fecally

contaminated (63).

Since V. cholerae is transmitted via a fecal-oral route,

the importance of water, sanitation, and hygiene

(WASH) services extends to personal hygiene and
cooking practices. Intriguingly, when compared to

water quality or excreta disposal, hand washing with
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soap was more effective and reduced diarrheal disease

by 42 - 48% (64). For cooking practices, Quick et al. found

a seven-fold higher risk of illness in people eating cold

cooked or raw seafood in El Salvador (65).

Another pillar in the prevention of cholera outbreaks

includes early and rapid disease detection and

treatment. As mentioned in the diagnosis section, RDTs

combined with APW have an 89% sensitivity and 98%

specificity that can help with surveillance efforts and

medical resource management to limit the severity of

outbreaks (39).

Further reduction of cholera risk was attained when

oral cholera vaccines (OCVs) were administered along

with improved WASH systems in endemic settings (66).

This was supported by Malembaka et al.'s finding of

single-dose OCV effectiveness of 44.7% 24 - 26 months

after vaccination compared to controls (67). The two

types of oral cholera vaccines (OCVs) include killed

whole-cell vaccines and live attenuated vaccines.

Regarding WC vaccines, three are prequalified by the

WHO: Dukoral®, Shanchol®, and Euvichol-Plus® (56).

Dukoral® contains killed whole cells of the O1 strain

along with the recombinant B subunit of CT and

provided negative protection in children under 5 years

and 15% protection in children over 6 years of age within

one year of surveillance. Shanchol® is bivalent,

containing killed whole cells from both O1 and O139 V.

cholerae strains, and provided 45% protection in all age

groups and only 17% in children under 5 years within

one year of surveillance (68).

The other type of OCVs is live-attenuated vaccines,

including Vaxchora®, which is the only FDA-approved

cholera vaccine for travelers aged 18-64 years. CVD 103-

HgR I (Vaxchora®), composed of O1 strains that have

been genetically modified to remove the gene encoding

the CTA subunit (the toxic subunit), has 90.3% protective

efficacy 10 days after vaccination and 79.5% after three

months. However, it has no proven efficacy in endemic

settings (69).

Current WHO recommendations include the use of

OCVs in cholera-endemic areas, as well as for people at

high risk of cholera during outbreaks. However, OCVs

should not be seen as a replacement for other

preventive measures, such as improving access to safe

water and sanitation and promoting good hygiene

practices (62).

2. Results and Conclusions

The ongoing cholera epidemic, driven by Vibrio

cholerae, is a critical global health concern. The disease's

severe watery diarrhea and rapid transmission through

contaminated sources lead to dehydration and

potential death if not promptly treated. Cholera

outbreaks are increasing, affecting multiple countries,

and necessitate urgent preventive measures. Improving

water sanitation, promoting hygiene practices, and

implementing early detection are crucial for

prevention. Vaccination with oral cholera vaccines offers

a promising intervention. Timely fluid replacement and

appropriate antibiotic therapy are essential for effective

treatment. Combating this escalating epidemic requires

immediate and concerted global efforts to save lives and

prevent further spread.
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