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Abstract

Background: The COVID-19 pandemic, which occurred between 2019 and 2023, posed a significant threat to global health. Its

high transmissibility, the emergence of new variants, and the novel nature of the disease made treatment and control highly

challenging.

Objectives: This study aimed to develop an algorithm for predicting the mortality of hospitalized COVID-19 patients using

machine learning methods.

Methods: This cross-sectional study was conducted on 581 hospitalized COVID-19 patients. The approach integrated multi-

model features derived from computed tomography (CT) scans and electronic health record (EHR) data. High-resolution

computed tomography (HRCT) images were initially processed using the Pulmonary Toolkit package in MATLAB software.

Subsequently, the extracted variables were entered into the model as predictive factors, alongside demographic characteristics,

underlying conditions, and laboratory results of the patients. The machine learning model was developed using the AdaBoost

method by incorporating demographic and laboratory data with HRCT features.

Results: In this study, 581 hospitalized COVID-19 patients were included. Among them, 199 (34.25%) patients died, while 382

(65.75%) recovered. According to the machine learning algorithm, the most effective variables for predicting COVID-19 mortality

were lymphocyte variables, CRP, age, mean lung density, lung tissue percentage, RBC count, D-dimer levels, and emphysema. The

MCC Index in this study was 0.73, and the area under the ROC curve was 0.96.

Conclusions: According to our results, the three variables with the greatest impact on predicting mortality in COVID-19

patients were related to HRCT findings, laboratory results, and patient age. Therefore, it is recommended that, given the high

cost of HRCT, this diagnostic test should only be performed if other risk factors are identified in laboratory results. If necessary,

HRCT should be conducted promptly.
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1. Background

COVID-19 is an acute respiratory infectious disease
caused by the virus severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (1). In January 2020, the

World Health Organization (WHO) declared the COVID-

19 outbreak a pandemic. The clinical outcomes of

COVID-19 range from mild symptoms to severe

complications and ultimately death, making it a
significant global health concern (2, 3). The rapid spread

of the disease has resulted in shortages of medical

equipment and burnout among healthcare workers (4,
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5). As of August 16, 2023, there have been 770,437,327

confirmed cases of COVID-19 globally, including

6,956,900 deaths (6). In the United States, from January
2020 until June 2023, there were 103,436,829 confirmed

cases of COVID-19, with 1,127,152 deaths (6).

The main symptoms of COVID-19 include fever,

cough, and shortness of breath, and the virus has high

transmission and prevalence rates. Other symptoms

may include tiredness, loss of taste or smell, muscle

aches, chills, sore throat, runny nose, headache, chest

pain, pink eye, nausea, vomiting, diarrhea, and rash (7).

The severity of COVID-19 symptoms can range from very

mild to severe. Some individuals may have no symptoms

at all but can still spread the virus through

asymptomatic transmission. The virus spreads via

respiratory droplets released when someone coughs,

sneezes, breathes, sings, or talks. COVID-19 is highly

contagious and has led to a rapid pandemic that poses a

serious threat to global public health (8, 9).

Due to the limited availability of diagnostic tests,

accurately diagnosing COVID-19 remains one of the
major challenges in managing this disease (10, 11).

Alongside polymerase chain reaction (PCR) diagnostic

tests, chest computed tomography (CT) scans are a

significant diagnostic method for detecting the virus

and monitoring the progression of the disease.
Although chest CT scans may yield “false positives” in

some cases, they remain a powerful tool for disease

diagnosis. According to specialist reports, three types of

abnormalities on CT scan images indicate COVID-19

infection: (1) Ground glass opacification, (2)
consolidation, and (3) pleural effusion (12). Developing

new tools for the improved detection of these

irregularities in radiology images can greatly aid in

controlling and managing COVID-19 (11).

Recently, the application of artificial intelligence and

machine learning methods has been recognized as an
efficient approach in the medical field. For example,

Causey et al. reported an algorithm for predicting lung

cancer using CT scan images and deep learning

approaches, achieving an accuracy of 78% (13). Ardakani

et al. developed eight machine learning models to
distinguish COVID-19 from other non-COVID-19 lung

diseases, achieving a ROC AUC of 0.994 for COVID-19
detection using their recent model (14).

2. Objectives

Given the importance of timely disease diagnosis,

this study employed machine learning methods to

predict the mortality of patients with COVID-19

infection.

3. Methods

3.1. Type of Study, Study Design, and Patient Selection

This cross-sectional study was conducted on 1,100
confirmed COVID-19 patients who were hospitalized at

Imam Reza or Qaem hospitals under Mashhad

University of Medical Sciences between December 2019

and December 2021. The 1,100 patients were selected

using systematic random sampling. If a patient’s high-
resolution computed tomography (HRCT) information

was unavailable, another patient was selected as a

replacement. Demographic information, chronic

disease history, imaging findings, vital signs, and

laboratory results were collected from the patients’

electronic medical records at the time of admission. The

flowchart detailing patient selection and data collection

is presented in Figure 1.

The patients' tissue and lung size values from CT scan
images were analyzed using the Pulmonary Toolkit

package in MATLAB software (Figure 2). Among the
remaining 953 samples, 604 patients recovered, while

349 patients died. After incorporating laboratory

information, 581 patients with complete data were
included in the study.

3.2. Inclusion and Exclusion Criteria

The inclusion criteria for this study were as follows:

Patients who were hospitalized with a positive PCR test
and had HRCT images available. Patients without HRCT

images were excluded from the study.

3.3. Statistics and Machine Learning Algorithm

Numerical variables were summarized using mean
and standard deviation. To enhance the performance of

data mining models and to determine the relationships

between variables affecting COVID-19 mortality, t-tests,

Mann-Whitney U tests, and chi-squared tests were

employed. These tests were used to identify significant
associations between variables and patient outcomes

(death or recovery). A P-value < 0.05 was considered

statistically significant. Variables with a significant

relationship to the response variable were identified as

risk factors.

In the machine learning model, the chi-squared (χ²)

feature selection algorithm was used to identify

significant variables, accommodating both quantitative

and qualitative variables. This algorithm is based on the

χ² statistic. The χ² value for r, defined as the difference in

k classes, is represented as follows (15).
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Figure 1. Data selection scenario

Figure 2. An example of a lung and the corresponding derived lung. The first row shows the original CT scan. The second row illustrates the segmented binary mask using our
segmentation pipeline. The third row shows the lobes.

nij: Is the feature of jth case

ni*: The number of ith feature at all features

n*j: The number of samples in jth class

n = Sample size

In this study, Adaptive Boosting (AdaBoost) was used

as a machine learning method to predict COVID-19-

related conditions, considering the type and quality of

the data (Table 1). AdaBoost is based on decision tree

algorithms and works by combining a high-accuracy

predictor with variables that have relatively weaker

accuracy (16, 17).

To evaluate the model's performance, 10-fold cross-

validation was implemented. This statistical method for
machine learning divides the dataset into training and

validation sets across multiple iterations, ensuring that

each data point is tested. Performance metrics,

including accuracy, precision, recall, F-score, ROC AUC,

and MCC, were calculated to assess the effectiveness of
the predictive models (Table 2).

χ2
=

r

∑
i=1

k

∑
j=1

(nij − μij)
2

μij

μij =
n*jni*

n
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Table 1. Confusion Matrix

Variable Predicted Values

Actual values Death (+) Recover (-)

Death (+) TP FN

Recover (-) FP TN

Table 2. Performance Metrics Formulas

Formulas Performance Metrics

Accuracy

Precision

Recall

F-score

Matthew’s correlation coefficient

In summary, the eligibility criteria and statistical

methods were as follows:

3.4. Eligibility Criteria

The eligibility criteria for inclusion in the study were:

- Patients must have been hospitalized with a

confirmed diagnosis of COVID-19 via PCR.

- Availability of HRCT images was required; patients

without these images were excluded.

- A total of 32 patients were excluded due to missing

HRCT images. From the remaining 1,068 DICOM images,

115 samples were discarded due to unclear imaging.

Ultimately, 581 patients with complete data were

included in the analysis.

3.5. Statistical Methods

To analyze the data and determine relationships

between variables affecting COVID-19 mortality, several

statistical methods were employed:

- t-tests, Mann-Whitney tests, and chi-squared tests

were used to identify significant relationships between

variables and patient outcomes (death or recovery),

with a significance level set at P < 0.05.

- Variables that demonstrated a significant
relationship with mortality were classified as risk

factors for prediction purposes.

- Adaptive Boosting (AdaBoost), based on decision

tree algorithms, was utilized to enhance prediction

accuracy by combining strong predictors with weaker

ones.

- To evaluate the model's performance, 10-fold cross-

validation was implemented. This method divides the

dataset into training and validation sets across multiple

iterations, ensuring that each data point is tested.

- Performance metrics, including accuracy, precision,

recall, F-score, ROC AUC, and MCC, were calculated to

assess the effectiveness of the predictive models.

3.6. Mitigation Strategies for Bias

Mitigation strategies for various types of biases in

this study included:

- Using data from referral hospitals and employing

systematic sampling methods to reduce selection bias.

- Involving expert clinicians and methodologists to

minimize measurement biases.

The analysis may not fully account for confounding

factors that could influence patient outcomes, such as

variations in treatment protocols or differences in

healthcare access among different populations. A total

of 32 patients were excluded due to missing HRCT
images, and an additional 115 samples were discarded

due to unclear imaging. These exclusions could result in

T P + T N

T P + FP + T N + FN

T P

T P + FP

T P

T P + FN

2 ×
Precision × sensitivity

Precision + sensitivity

MCC =

TN × TP − FN × FP

(TP + FP )(TP + FN)(TN

+ FP )(TN + FN)
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Table 3. Demographic Characteristics, Comorbidities, Image Processing Result and Laboratory Finding on Admission a

Variables Death (n = 199) Non-death (n = 382) P-Value

Age 66.57 57.34 < 0.001

Gender 0.31

Male 113 (56.7) 182 (47.6)

Female 86 (43.2) 200 (52.3)

Comorbidities

Nausea 8 (4) 24 (6) 0.276

Cancer 8 (4) 2 (0.5) 0.002

Diabetes 27 (13) 60 (15) 0.493

Asthma 3 (1.5) 4 (1) 0.629

Heart disease 10 (5) 30 (7) 0.201

Chronic kidney disease 4 (2) 5 (1) 0.516

Chronic lung disease 5 (2) 5 (1) 0.29

Hypertension 38 (19) 79 (20) 0.651

PO2 83.7 87.7 < 0.001

Image processing result

Percent of air 61.18 65.22 < 0.001

Volume of air, cm3 1490.27 1698.42 0.005

Percent of emphysema 10.97 11.58 0.403

Mean density, HU -611.81 -652.22 < 0.001

Percent of tissue 38.81 34.77 < 0.001

Emphysema 896.49 911.89 0.027

Laboratory finding on admission

White blood cell, × 1000/mL 8.41 7.24 0.236

Red blood cell, × 1000/mL 9.81 6.26 0.003

LDL 104.2 68.75 0.338

Ferritin, ng/mL 689.08 541.74 0.027

FBS 156.10 209.57 0.069

D-dimer, ng/mL 325.8 167.2 < 0.001

C-reactive protein, mg/dL 10.8 6.6 < 0.001

Percent of Lymphocytes 14.15 9.65 < 0.001

a Values are expressed as No. (%) unless otherwise indicated.

the loss of potentially relevant data and may impact the
generalizability of the findings.

While the study provides valuable insights into

COVID-19 patient outcomes, caution should be exercised

when applying its findings to broader populations due

to differences in demographics, healthcare practices,

and the evolving treatment landscape.

4. Results

The study was conducted on 581 patients, of whom

295 were male with an average age of 50.3 years, and 286

were female with an average age of 50 years. Of these,

199 patients were in the mortality group, and 382 were

in the recovery group. The descriptive statistics are

presented in Table 3.

The average age of deceased patients was 66.57 years,
compared to 57.34 years for recovered patients. In the

comorbidities subgroup analysis, only patients with
cancer showed a significant difference (P-value = 0.002,

Table 3). Additionally, the comparison of the mean SpO₂
Index between deceased and recovered patients was
statistically significant (P-value = 0.002).

From the image processing results, the mean lung

density, the percentage of air in the lungs, and the

volume of air in the lungs were statistically different

between the deceased and recovered groups (P-value <

0.001), P-value < 0.001, and P-value = 0.005,

respectively). Furthermore, the emphysema Index in the

recovery group was significantly higher than in the

deceased group (P-value = 0.002).
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Figure 3. Feature selection using the fscchi2 method

In laboratory findings, there were significant

differences in red blood cell (RBC) counts, lymphocyte

levels, C-reactive protein (CRP), ferritin, and D-dimer

levels between deceased and recovered patients.

The Adaptive Boosting (AdaBoost) model was fitted to

the data to predict treatment outcomes, and the three

variables with the most significant impact on prediction

are shown in Figure 3. In the final model, 10 variables—

including lymphocytes, CRP, age group, mean tissue

density, RBC, D-dimer, pO₂, cancer, and emphysema—

were identified as having the most significant impact on

prediction and were included in the analysis.

After fitting the model to predict treatment

outcomes, the ROC curve was plotted to evaluate the

model, yielding an AUC of 0.96 (Figure 4). Table 4
presents the confusion matrix for the AdaBoost model

in predicting the outcomes of hospital care for COVID-19

inpatients. The evaluation metrics of the model are

displayed in Table 5. The accuracy and precision of the

model were 0.88 and 0.89, respectively. Predictive
models like this one aim to maximize the agreement

between predicted and actual values regarding recovery

and mortality. Matthew's correlation coefficient (MCC)

showed a value of 0.73 (Table 5).

5. Discussion

This study presents a retrospective analysis of patient

data to predict the mortality of COVID-19 patients

hospitalized in referral hospitals between 2010 and 2021.

Machine learning algorithms were applied to predict

disease outcomes based on clinical data from

hospitalized patients.

Lai et al. used the Adaptive Boosting algorithm to

identify the most effective variables for predicting

mortality in COVID-19 patients. Their findings revealed

that lymphocyte counts were significantly lower in

patients with severe COVID-19 compared to those with

mild cases (18).

Lymphocyte count and CRP are two important

variables in predicting the risk of death in patients with

COVID-19. Several studies have shown that lymphocyte
count serves as a universal predictor of health outcomes

in COVID-19 patients (19).

Winderadi et al. have indicated that CRP, as an acute-

phase protein, is an effective marker for predicting

severe COVID-19 (20). In a meta-analysis study, it was

demonstrated that CRP is a significant variable in

distinguishing between severe and mild cases of COVID-

19 (21).

In the present study, we found that RBC was an

effective variable for predicting the risk of death in

https://brieflands.com/articles/archcid-150150
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Figure 4. Receiver operating characteristic (ROC) curve for evaluating the predictive power of treatment outcomes in patients with COVID-19

Table 4. Confusion Matrix for AdaBoost Model for Predicting the Outcome of Hospital Care of COVID-19 Inpatient

Variables Predicted Survival Predicted Death

Actual survival 357 25

Actual death 44 155

Table 5. Indices for the AdaBoost Model for Predicting the Outcome of Hospital Care for COVID-19 Inpatients

Index AdaBoost

Accuracy 0.88

Precision 0.89

F-measure 0.84

Recall 93.1

Matthew’s correlation coefficient 0.73

COVID-19 patients. Hemoglobin in RBCs is considered an

important biomarker, reflecting oxygen levels in the

blood and serving as a significant variable in predicting

COVID-19 mortality (22). Thomas et al. showed that RBC

counts were significantly higher in COVID-19 patients

compared to healthy individuals (23).

Additionally, age has been identified as a crucial

variable for predicting COVID-19 mortality (24, 25).

Bonanad et al. conducted a meta-analysis of 611,583

COVID-19 patients across five continents to investigate

mortality rates among different age groups. They found

that the mortality rate for individuals under 50 years

old was 1.1%, and this rate increased with age, peaking in

https://brieflands.com/articles/archcid-150150
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individuals aged 80 years or older (26). Another study

found that individuals aged 55-64 years had an 8.1-fold

higher COVID-19 mortality rate than those under 55

years of age (27). These findings suggest that age is a

significant predictor of COVID-19 mortality. As age

increases, the mortality rate also rises, with the highest

mortality rates observed in patients aged 80 years and

above (24).

Lyu et al. aimed to evaluate the severity of COVID-19

based on HRCT images. They found that the mean lung

density, measured on the HU Scale, was higher in

patients with severe COVID-19 compared to healthy

individuals (28). In our study, the mean lung density in

deceased individuals was also found to be higher than

in those who recovered. Notably, the diagnostic value of

CT scanning in assessing lung density has already been

well-established and is considered preferable to other

subjective visual examinations (29).

The data suggest that lung density is a potential

imaging tool for assessing the severity of COVID-19, and

its results can be valuable for identifying patients at risk

of severe disease progression (30). However, further

studies are necessary to validate the clinical utility of

lung density analysis in managing COVID-19.

Additionally, we observed that the average D-dimer

level was significantly lower in recovered individuals

compared to deceased patients (P-value = 0.001). D-

dimer is a blood biomarker that plays a critical role in

predicting outcomes for patients with COVID-19 (31). One

study indicated that the mean D-dimer level in patients

with mild COVID-19 was approximately one-sixth of that

in patients with severe disease (32).

It has also been demonstrated that patients with

malignancies are at a higher risk of COVID-19 infection

and severe complications due to their

immunocompromised state (33). Similarly, other studies

have reported an increased rate of COVID-19-associated

mortality among cancer patients (34, 35).

The risk of severe COVID-19 outcomes increases with

age, and patients with malignant tumors are at a higher

risk for severe illness due to their underlying medical

conditions (36). During the COVID-19 pandemic, cancer

patients have had limited access to medical facilities

and services, which has increased the likelihood and

severity of their conditions (37). In our study, a

significant difference was observed in the proportion of

cancer patients between the deceased and recovered

groups (P-value = 0.02). Patients with malignancies are

at higher risk for severe complications and mortality

from COVID-19 due to their immunocompromised state

and underlying medical conditions. Vaccination has

been shown to help reduce deaths and severe illness

from COVID-19, as well as to decrease transmission in

these patients (38).

In recent studies, predicting the severity and

mortality of COVID-19 has been a major focus. Several

studies have explored the relationship between COVID-

19 and mortality, including excess mortality due to

COVID-19, as well as machine learning models to predict

mortality and critical events in COVID-19 patients. In a

study by Akhtar et al., 10 machine learning algorithms

were used to predict COVID-19 infection based on CBC

results (39). According to their results, the highest

accuracy (100%) in predicting infection was achieved by

three algorithms: Random Forest, K Nearest Neighbor

(KNN), and kStar. These findings suggest that machine

learning algorithms can be useful in predicting COVID-

19 infection based on CBC results. Further research is

needed to establish the clinical utility of these

algorithms in managing COVID-19. Moulaei et al.

conducted a study on 1500 COVID-19 patients to predict

mortality using various machine learning models. Their

results showed that the ML and RF methods had the

highest accuracy (> 80%) (1). In another study, Zakariaee

et al. assessed the performance of four machine

learning algorithms (LR, RF, SVM, and XGBoost) and

found that XGBoost had the best performance in terms

of AUC (40).

Schiaffino et al. conducted a study on 897

hospitalized COVID-19 patients to predict in-hospital

mortality using HRCT scans. The algorithms used in this

study were Support Vector Machine (SVM) and multi-

layer perceptron (MLP). The area under the ROC curve

for the SVM and MLP models was 0.74 and 0.84,

respectively (41). Nuthalapati et al. used deep learning

methods to predict mortality or hospitalization in the

intensive care unit (ICU) for COVID-19 patients. Other

variables, such as HRCT images and electronic health

record (HER) data, were used in this study. They found

that the normal lung volume, normal lung percentage

(NLperc), muscle volume, fat volume, muscle-fat ratio,

age, sex, and lesion percentage were the most important

variables for predicting mortality and ICU

hospitalization. The area under the ROC curve was

approximately 0.77 (42). Other studies have also

explored the use of deep learning algorithms in

analyzing body composition on CT scans to predict

outcomes in COVID-19 patients. In this context, Zhang et

al. (as cited by Nachit et al.) used a deep learning

algorithm to analyze body composition on CT scans and

found that myosteatosis was a key predictor of mortality

in asymptomatic adults (43). These findings suggest that

deep learning algorithms can be useful in predicting

outcomes in COVID-19 patients based on body
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composition analysis. Further research is needed to

establish the clinical utility of these algorithms in

COVID-19 management.

Machine learning algorithms have been used in

many studies to predict COVID-19 mortality. Some

studies have used only clinical features, while others

have incorporated radiological features as well. The

selection of ML algorithms was based on related studies

in the field and the quality of the selected dataset. The

most commonly used algorithms were SVM, MLP, RF,

KNN, and kStar. The performance of the models was

evaluated using metrics derived from the confusion

matrix, such as AUC and MCC. Important predictors for

COVID-19 patient mortality included lymphocyte count,

CRP, age, mean lung density, lung tissue percentage,

RBC, D-Dimer, and emphysema. The AUC of the models

ranged from 0.74 to 0.96. Some studies also used deep

learning techniques and EHR data to predict mortality

or hospitalization in COVID-19 patients.

In most studies, only the ROC curve, which is a

function of the accuracy of predictions, is reported,
typically yielding good results. However, in the present

study, the agreement of the 4 cells in the contingency
table was calculated using MCC. This showed that,

although the model may perform well in predicting

patient improvement, it may not perform as well in
predicting patient mortality, which is the primary

concern. For example, in the Gong study, it was shown
that all confusion matrix indices focus solely on false

positives, while only the MCC Index takes into account

both false positives and false negatives (44).

5.1. Conclusions

The main limitations of our study include the

possibility that our analysis may not fully account for

confounding factors that could influence patient
outcomes, such as variations in treatment protocols or

differences in healthcare access across different
populations. We suggest that simulation studies should

be used to enhance understanding and create

appropriate indices for machine learning methods,
which can be selected based on the type of data. The

three variables with the greatest impact on predicting
mortality in COVID-19 patients were related to

laboratory results, with age being the next most

significant variable. Therefore, we recommend that, due
to cost, HRCT should only be performed if risk factors

are observed in laboratory results, and if necessary,
HRCT should be performed promptly.
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