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Abstract

Background: Antimicrobial resistance (AMR) has been a concerning public health issue even before the coronavirus disease

2019 (COVID-19) outbreak. However, the impact of the COVID-19 pandemic on AMR has not been comprehensively investigated.

Objectives: The main objective of this study was to investigate the patterns of AMR before, during, and after the COVID-19

pandemic.

Methods: Data from hospital records of cancer patients in the hematology ward were obtained for this cross-sectional study

using a census sampling method from January 2018 to July 2023. Clinical specimens were collected, including urine, stool,

cerebrospinal fluid, ascites, pleural fluid, oropharynx, blood, and synovial fluid. All specimens were sent to the central

laboratory of the hospital. The obtained samples were cultured on blood agar (Merck) and MacConkey agar (Merck) media and

incubated for 24 hours. The classification of strains as resistant, intermediate, or susceptible was determined according to the

Clinical and Laboratory Standards Institute (CLSI) guidelines.

Results: In the present study, 382 isolates were obtained from 186 (48.7%) males and 196 (51.3%) females admitted to the

hematology ward at Taleqani Hospital. Among the 382 isolates, 102 were Escherichia coli, 97 were Klebsiella pneumoniae, 51 were

Pseudomonas aeruginosa, 49 were coagulase-negative Staphylococcus, 30 were S. aureus, and 53 were other species. There was a

changing trend in the antibiotic susceptibility patterns of ceftazidime for coagulase-negative Staphylococcus, as well as in

multiple agents including meropenem, amikacin, and piperacillin-tazobactam for P. aeruginosa. For K. pneumoniae, there was a

significant change in the antibiotic susceptibility patterns for amikacin, piperacillin, and ceftriaxone. For S. aureus, a significant

difference was observed in the antibiotic susceptibility patterns of meropenem and clindamycin. For E. coli, significant

differences were found in antibiotic susceptibility patterns for imipenem, amikacin, and cefazolin.

Conclusions: Although we have navigated through the COVID-19 pandemic, its consequences, such as altered trends in AMR,

continue to pose challenges to the healthcare system. Coronavirus disease 2019 has influenced the resistance patterns of both

gram-negative and gram-positive bacteria. Monitoring adherence to guidelines is crucial to prevent further spread of resistant

strains, particularly in developing countries where improvements in attitudes toward antibiotic prescription and hygiene

standards are needed.

Keywords: Antibiotic Resistance, COVID-19, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae

1. Background

The coronavirus disease 2019 (COVID-19) pandemic

has severely affected many aspects of human life and, as

of October 4, 2023, has resulted in more than six million

confirmed deaths globally (1). Coronavirus disease 2019

has posed significant challenges to clinicians, as it

mimics various infections and medical conditions,

which may contribute to changes in patterns of

antibiotic prescription and resistance (2, 3).
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Antimicrobial resistance (AMR), also known as the

"silent pandemic", was a serious public health issue even

before the COVID-19 outbreak. In 2019, AMR directly

caused nearly 1.3 million deaths worldwide, making it

the third leading cause of mortality after cardiovascular

disease and cancer (4). The rate of AMR is steadily

increasing, and it is estimated to be responsible for

approximately 10 million deaths annually by 2050 if no

action is taken (5).

Several studies have indicated an increase in AMR

during the COVID-19 pandemic, likely due to increased

antibiotic usage and decreased AMR surveillance (6).

The lack of efficient treatments for COVID-19, the

similarity of its symptoms and radiological findings to

bacterial pneumonia, uncertainty regarding the

prevalence of bacterial superinfection and coinfection

in COVID-19 patients, and the initial recommendations

to use azithromycin and hydroxychloroquine in COVID-

19 treatment (which were later rejected) all contributed

to the overprescription of antibiotics, particularly

during the early months of the pandemic (7, 8).

Despite the low prevalence of bacterial coinfections

in COVID-19 patients, a significant proportion of them

received antibiotics (9, 10). One study reported that

while only 7% of hospitalized patients and 14% of

intensive care unit (ICU) patients had bacterial co-

infections, 72% of them received antibiotics (9, 10).

Several studies have indicated an increase in the

prevalence of multidrug-resistant (MDR) bacteria,

particularly Klebsiella pneumoniae, during the COVID-19

pandemic (11, 12). The primary source of nosocomial

infections is hospital wards, especially ICUs. During the

pandemic, increased rates of hospitalization, prolonged

ICU stays, crowded hospitals, longer shifts,

corticosteroid therapy, and prolonged use of personal

protective equipment (PPE) without changing it during

shifts due to scarcity have all contributed to the

increased transmission of MDR pathogens (13-15).

According to a report from the Centers for Disease

Control and Prevention (CDC), the rate of both hospital-

acquired resistant infections and deaths increased by

15% between 2019 and 2020 (12).

2. Objectives

Data regarding the relationship between AMR and

COVID-19 are limited and inconclusive. Therefore, we

conducted the present study to investigate the pattern

of antibiotic resistance before, during, and after the

nine waves of the pandemic among cancer patients in

the hematology ward of Taleqani Hospital, Tehran, Iran.

3. Methods

3.1. Clinical Samples

This retrospective cross-sectional study was

conducted at Taleqani Hospital, Tehran, Iran, using a

census sampling technique. Data from laboratory

records of cancer patients in the hematology ward from

January 2018 to July 2023 were analyzed. Clinical

specimens from urine, stool, cerebrospinal fluid, ascites,

pleural fluid, oropharynx, blood, synovial fluid, and

other clinical samples (e.g., wound samples) from

cancer patients hospitalized in the hematology ward

were included. Exclusion criteria were as follows:

Samples obtained from patients with polymicrobial

infections and multiple samples from a single patient.

All specimens were sent to the central laboratory of the

hospital.

3.2. Sample Identification

To identify different species of bacteria, all samples

were processed using standard microbiological

protocols. Standard biochemical methods were applied

to detect isolates of Escherichia coli, K. pneumoniae, and

Acinetobacter baumannii, as well as Candida spp.,

Staphylococcus epidermidis, Staphylococcus aureus, Proteus

vulgaris, Enterococcus spp., Citrobacter freundii, K. oxytoca,

K. aerogenes, Citrobacter koseri, Neisseria  meningitidis,

S.  saprophyticus, P. mirabilis, Enterobacter  cloacae,

anaerobic pathogens, and others. The obtained samples

were cultured on blood agar (Merck) and MacConkey

agar (Merck) media and incubated for 24 hours.

3.3. Antimicrobial Susceptibility Testing

The antibiotic agents tested in the panel strains

included ampicillin, ampicillin-sulbactam, amikacin,

piperacillin, piperacillin-tazobactam, ciprofloxacin,

cefazolin, cefepime, ceftriaxone, colistin, cefoxitin,

erythromycin, cefotaxime, clindamycin, ceftazidime, co-

amoxiclav, imipenem, meropenem, levofloxacin,

gentamicin, linezolid, co-trimoxazole, nitrofurantoin,

nalidixic acid, oxacillin, vancomycin, trimethoprim, and

penicillin. The classification of strains as resistant,

intermediate, or susceptible was based on the Clinical
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and Laboratory Standards Institute (CLSI) guidelines

(16).

3.4. Statistical Analysis

The data were analyzed using SPSS software, version

19. Frequency (percentage) was used to illustrate the

qualitative variables. The normal distribution of the

variables was tested using the Kolmogorov–Smirnov

test. The mean ± standard deviation (SD) was calculated

for the quantitative variables. The chi-square or Fisher

exact test was used to compare qualitative variables. The

microbial antibiotic resistance patterns for each agent

were compared across different years. A P-value of less

than 0.05 was considered statistically significant, with a

95% confidence interval (CI).

3.5. Ethics

The current study was approved by the Ethical

Committee of Shahid Beheshti University of Medical

Sciences (IR.SBMU.RETECH.REC.1402.355).

4. Results

4.1. Isolates

In the present study, 382 isolates were obtained from

186 (48.7%) males and 196 (51.3%) females admitted to the

hematology ward at Taleqani Hospital. Among these

specimens, 190 (49.7%) were from blood, 134 (35.1%) from

urine, 10 (2.6%) from ascites, 9 (2.4%) from the

oropharynx, 3 (0.8%) from pleural fluid, 1 (0.3%) from

stool, 1 (0.3%) from cerebrospinal fluid, 1 (0.3%) from

synovial fluid, and 33 (8.6%) were from other samples.

Among the 382 clinical isolates, 102 were E. coli, 97 were

K. pneumoniae, 51 were P. aeruginosa, 49 were coagulase-

negative Staphylococcus, 30 were S. aureus, and 53 were

other species (Figure 1). Other species included

anaerobic bacteria, S.  epidermidis, nonhemolytic

Streptococcus, P. vulgaris, Enterococcus, C. freundii, K.

oxytoca, K. aerogenes, C. koseri, group D Streptococcus, N.

meningitides, S. saprophyticus, P. mirabilis, Candida spp., A.

baumannii, and E. cloacae.

4.2. Antibiogram Results by Agar Disc Diffusion Method

The antibiotic susceptibility patterns of all strains are

shown in Table 1. The highest reported resistance of E.

coli was to cefazolin (47.8%) and co-amoxiclav (45.9%). For

K. pneumoniae, the highest resistance rate was to co-

amoxiclav (37.2%) and amikacin (31.8%). For P. aeruginosa,

the highest resistance rate was to nitrofurantoin (66.7%)

and amikacin (51%). Among S. aureus strains, the highest

resistance rate was to ampicillin (63.3%) and cefazolin

(34.5%). Finally, for coagulase-negative Staphylococcus,

the highest resistance was to levofloxacin (100%) and

penicillin (52.3%).

4.3. Results by Year

The number of specimens sent to the laboratory by

year is illustrated in Figure 2. The years with the highest

number of isolates for coagulase-negative Staphylococcus

(n = 17), E. coli (n = 29), P. aeruginosa (n = 19), K.

pneumoniae (n = 31), and S. aureus (n = 10) were 2023,

2022, 2021, 2019, and 2021, respectively.

Antibiotic susceptibility patterns from the years of

the pandemic, spanning from January 2018 to July 2023,

are presented in Tables 2 - 6 (see Appendix 1 for full

results). There were significant differences in resistance

to ceftazidime for coagulase-negative Staphylococcus and

to amikacin, cefepime, ceftazidime, ciprofloxacin, co-

amoxiclav, gentamicin, meropenem, piperacillin, and

piperacillin-tazobactam for P. aeruginosa. For K.

pneumoniae, significant differences were observed in

resistance to amikacin, piperacillin, and ciprofloxacin.

For S. aureus, significant differences were observed in

resistance to meropenem, gentamicin, erythromycin,

and Clindamycin. For E. coli, significant differences were

found in resistance to imipenem, amikacin, and

cefazolin.

5. Discussion

The COVID-19 pandemic has altered the AMR profiles

and their clinical effects worldwide. Most of the

available studies confirm an increased rate of AMR since

the onset of the pandemic, particularly among

hospitalized patients (15, 17-19). However, limited data

are available regarding post-pandemic AMR, and

resistance patterns vary among different species (17, 18).

Therefore, there is an urgent need for studies that

provide comprehensive data on AMR patterns in this

era.

In this study, 382 clinical samples were collected from

the hematology ward, with blood (49.7%) and urine

(35.1%) cultures being the most common. The most

prevalent microorganism isolated was E. coli (26.7%),

followed by K. pneumoniae (25.4%). Coagulase-negative

https://brieflands.com/articles/archcid-150568
https://ethics.research.ac.ir/ProposalCertificateEn.php?id=397596


Nabavi A et al. Brieflands

4 Arch Clin Infect Dis. 2025; 20(2): e150568

Figure 1. Distribution of clinical isolates

Figure 2. Frequency of samples by year (see Appendix 1 for more details)

Staphylococcus (71.4%) and S. aureus (63.3%) were the most

resistant pathogens to ampicillin. P. aeruginosa showed

high resistance rates for the majority of the antibiotics

surveyed.

Recent studies have shown that the AMR pattern of

gram-negative bacteria has significantly changed due to

the COVID-19 pandemic (17). Recent evidence reported K.

pneumoniae, E. coli, P. aeruginosa, and A. baumannii as the

most frequent gram-negative bacteria during the

pandemic (20). According to our data, clinical isolates of

E. coli were most resistant to cefazolin (47.8%) and co-

amoxiclav (45.9%). The highest prevalence of E. coli was

observed in 2020 and 2022 (35.3% and 41.4%,

respectively). In our study, K. pneumoniae was the second

https://brieflands.com/articles/archcid-150568
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Table 2. Antibiotic Resistance Pattern in Coagulase-Negative Staphylococcus by Year a

Variables
Year

P-Value
2018 2019 2020 2021 2022 2023

Amikacin 0.151

S 2 (40.0) 3 (60.0) 4 (100.0) 4 (66.7) 7 (77.8) 12 (70.6)

I 3 (60.0) 0 (0.0) 0 (0.0) 2 (33.3) 1 (11.1) 1 (5.9)

R 0 (0) 2 (40.0) 0 (0.0) 0 (0.0) 1 (11.1) 4 (23.5)

Ceftazidime 0.007

S 1 (25.0) 2 (66.7) 1 (50.0) 2 (33.3) 0 (0.0) 0 (0.0)

I 1 (25.0) 1 (33.3) 0 (0.0) 3 (50.0) 3 (42.9) 0 (0.0)

R 2 (50.0) 0 (0.0) 1 (50.0) 1 (16.7) 4 (57.1) 8 (100.0)

Clindamycin 0.016

S - 3 (50.0) 1 (100.0) 1 (25.0) 2 (40.0) 4 (28.6)

I - 1 (16.7) 0 (0.0) 3 (75.0) 3 (60.0) 1 (7.1)

R - 2 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 9 (64.3)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).

most common species (25.4%), although its frequency

has decreased since the pandemic. A pre-pandemic

study conducted on 165 clinical isolates in Iran reported

that the resistance rate of E. coli isolates to imipenem

and meropenem was 10.6% and 19.5%, respectively, which

was notably lower than our findings (29.8% and 27.8%,

respectively) (21). Another study in northeast Iran

examined the trends of gram-negative AMR during the

COVID-19 pandemic (2). This study found that 42.7% of E.

coli isolates were resistant to imipenem (2). Similarly,

our results indicate that the trend of imipenem

resistance among E. coli strains significantly peaked

during the pandemic.

In a Brazilian study by Porto et al., clinical isolates

collected from patients in the ICU were compared

between the pre-pandemic (2019) and pandemic (2020)

periods (22). The results showed no significant change

in the frequency of carbapenem-resistant Enterobacteria,

including Klebsiella and E. coli species (22). Similarly, our

study found no significant change in the resistance

pattern of Klebsiella to carbapenems from 2018 to 2023.

However, the resistance profile of E. coli to imipenem (P-

value = 0.01) did change. A systematic review reported a

decreasing trend in extended-spectrum beta-lactamase

(ESBL)-producing E. coli and K. pneumoniae, as well as a

decline in carbapenem-resistant E. coli during the

pandemic (19). However, the rate of carbapenem-

resistant K. pneumoniae increased during this period

(19). In a French study by Lemenand et al., it was

reported that after the general lockdown in March 2020,

among clinical isolates from nursing home residents

and primary care patients, the frequency of ESBL-

producing E. coli significantly decreased (23). This may

be attributed to a lower rate of antibiotic use and

infection transmission during the lockdown, which

potentially improved antibiotic susceptibility patterns.

In contrast to Lemenand et al. (23), our results show

that E. coli isolates exhibited higher rates of resistance to

some beta-lactams, such as cefazolin, ceftriaxone,

cefepime, and imipenem, during the pandemic years,

particularly during the post-lockdown period. These

findings may be linked to the varying standards of

lockdown measures and different antibiotic use

surveillance programs between high-income and non-

high-income countries (18, 24).

Moreover, in our study, K. pneumoniae strains showed

higher resistance to cefazolin during the pandemic

period. However, the resistance trend of K. pneumoniae

isolates to ceftriaxone changed significantly, with these

isolates becoming more sensitive to ceftriaxone over the

pandemic. Another study examined the susceptibility

patterns of clinical E. coli samples during the pandemic

(September 2019 to March 2020 and March 2020 to

September 2020) (25). According to that study, among

other gram-negative isolates, the prevalence of E. coli in

the second period (25.5%) was significantly lower than in

the first period (48%) (25). This study also demonstrated

improved susceptibility to all antibiotics, except

https://brieflands.com/articles/archcid-150568
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Table 3. Antibiotic Resistance Pattern in Pseudomonas aeruginosa by Year a

Variables
Year

P-Value
2018 2019 2020 2021 2022 2023

Amikacin 0.001

S 0 (0.0) 3 (33.3) 3 (30.0) 13 (68.4) 3 (50.0) 0)0.0)

I 2 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7) 0 (0.0)

R 0 (0.0) 6 (66.7) 7 (70.0) 6 (31.6) 2 (33.3) 5 (100.0)

Cefepime 0.039

S 0 (0.0) 0 (0.0) 2 (20.0) 9 (47.4) 3 (50.0) 0 (0.0)

I 2 (100.0) 8 (100.0) 7 (70.0) 10 (52.6) 2 (33.3) 4 (100.0)

R 0 (0.0) 0 (0.0) 1 (10.0) 0 (0.0) 1 (16.7) 0 (0.0)

Ceftazidime 0.009

S 0 (0.0) 0 (0.0) 4 (40.0) 7 (36.8) 3 (50.0) 0 (0.0)

I 2 (100.0) 8 (100.0) 6 (60.0) 12 (63.2) 1 (16.7) 5 (100.0)

R 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (33.3) 0 (0.0)

Ciprofloxacin 0.003

S 0 (0.0) 3 (33.3) 8 (80.0) 14 (73.7) 5 (83.3) 0 (0.0)

I 2 (100.0) 5 (55.6) 2 (20.0) 5 (26.3) 1 (16.7) 5 (100.0)

R 0 (0.0) 1 (11.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Co-Amoxiclav 0.016

S 0 (0.0) 0 (0.0) 5 (50.0) 1 (5.3) 0 (0.0) 0 (0.0)

I 2 (100.0) 6 (66.7) 4 (40.0) 6 (31.6) 3 (75.0) 2 (66.7)

R 0 (0.0) 3 (33.3) 1 (10.0) 12 (63.2) 1 (25.0) 1 (33.3)

Gentamicin 0.018

S 1 (100.0) 4 (57.1) 2 (40.0) 3 (23.1) 0 (0.0) 0 (0.0)

I 0 (0.0) 3 (42.9) 3 (60.0) 8 (61.5) 0 (0.0) 4 (100.0)

R 0 (0.0) 0 (0.0) 0 (0.0) 2 (15.4) 3 (100.0) 0 (0.0)

Meropenem 0.008

S 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.7) 2 (33.3) 0 (0.0)

I 0 (0.0) 2 (28.6) 7 (77.8) 11 (73.3) 0 (0.0) 2 (40.0)

R 1 (100.0) 5 (71.4) 2 (22.2) 3 (20.0) 4 (66.7) 3 (60.0)

Piperacillin 0.037

S 0 (0.0) 0 (0.0) 0 (0.0) 6 (31.6) 3 (50.0) 1 (33.3)

I 0 (0.0) 5 (55.6) 7 (77.8) 10 (52.6) 2 (33.3) 0 (0.0)

R 1 (100.0) 4 (44.4) 2 (22.2) 3 (15.8) 1 (16.7) 2 (66.7)

Piperacillin-tazobactam 0.036

S - (0.0)0 - - 2 (100.0) 1 (20.0)

I - 0 (0.0) - - 0 (0.0) 4 (80.0)

R - 1 (100.0) - - 0 (0.0) 0 (0.0)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).

ampicillin, co-amoxiclav, amoxicillin, cefadroxil, and

piperacillin, during the second period (25). However,

our results revealed that the frequency of E. coli peaked

during the pandemic years, from 2020 to 2022.

Additionally, E. coli resistance patterns to amikacin,

cefazolin, and imipenem significantly changed over the

surveyed period. A retrospective study in Indonesia on

bacterial blood isolates found that the resistance rate of

E. coli and K. pneumoniae to third-generation

cephalosporins did not increase during 2019 - 2020.

Similarly, our results demonstrated relatively lower

resistance rates to third-generation cephalosporins for

K. pneumoniae during the pandemic years. However, the

findings of the previous study are not entirely

consistent with ours, as the highest frequencies of

ceftriaxone-resistant E. coli were observed during the
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Table 4. Antibiotic Resistance Pattern in Klebsiella pneumoniae by Year a

Variables
Year

P-Value
2018 2019 2020 2021 2022 2023

Amikacin < 0.001

S 2 (28.6) 19 (70.4) 7 (58.3) 14 (70.0) 5 (50.0) 2 (16.7)

I 5 (71.4) 2 (7.4) 1 (8.3) 1 (5.0) 2 (20.0) 0 (0.0)

R 0 (0.0) 6 (22.2) 4 (33.3) 5 (25.0) 3 (30.0) 10 (83.3)

Cefazolin 0.091

S 2 (33.3) 2 (9.1) 2 (18.2) 3 (16.7) 1 (12.5) 1 (7.7)

I 4 (66.7) 10 (45.5) 6 (54.5) 11 (61.1) 4 (50.0) 12 (92.3)

R 0 (0.0) 10 (45.5) 3 (27.3) 4 (22.2) 3 (37.5) 0 (0.0)

Ceftriaxone 0.009

S 2 (25.0) 0 (0.0) 4 (30.8) 4 (20.0) 2 (28.6) 2 (33.3)

I 4 (50.0) 23 (88.5) 7 (53.8) 13 (65.0) 5 (71.4) 1 (16.7)

R 2 (25.0) 3 (11.5) 2 (15.4) 3 (15.0) 0 (0.0) 3 (50.0)

Ciprofloxacin 0.152

S 2 (28.6) 7 (23.3) 5 (38.5) 4 (19.0) 4 (40.0) 1 (8.3)

I 5 (71.4) 15 (50.0) 8 (61.5) 16 (76.2) 6 (60.0) 10 (83.3)

R 0 (0.0) 8 (26.7) 0 (0.0) 1 (4.8) 0 (0.0) 1 (8.3)

Piperacillin

S 0 (0.0) 1 (4.5) 2 (18.2) 0 (0.0) 1 (12.5) 5 (55.6) 0.006

I 4 (80.0) 18 (81.8) 8 (72.7) 17 (94.4) 6 (75.0) 2 (22.2)

R 1 (20.0) 3 (13.6) 1 (9.1) 1 (5.6) 1 (12.5) 2 (22.2)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).

Table 5. Antibiotic Resistance Pattern in Staphylococcus aureus by Year a

Variables
Year

P-Value
2018 2019 2020 2021 2022 2023

Clindamycin 0.024

S - 0 (0.0) 0 (0.0) 1 (20.0) 0 (0.0) 1 (20.0)

I - 1 (100.0) 1 (100.0) 4 (80.0) 1 (100.0) 0 (0.0)

R - 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (80.0)

Erythromycin 0.017

S - 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

I - 0 (0.0) 1 (100.0) 8 (100.0) 1 (100.0) 4 (80.0)

R - 2 (66.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (20.0)

Gentamicin 0.031

S 1 (100.0) 1 (16.7) - 4 (40.0) 3 (50.0) 6 (100.0)

I 0 (0.0) 5 (83.3) - 6 (60.0) 3 (50.0) 0 (0.0)

R 0 (0.0) 0 (0.0) - 0 (0.0) 0 (0.0) 0 (0.0)

Meropenem 0.020

S 1 (100.0) 0 (0.0) 0 (0.0) 6 (60.0) 1 (20.0) 0 (0.0)

I 0 (0.0) 6 (100.0) 1 (100.0) 4 (40.0) 4 (80.0) 5 (83.3)

R 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).

pandemic (26). In another retrospective study, Golli et al.

compared pre- and post-COVID-19 resistance trends of

bacterial isolates collected from ICU patients in

Romania and reported that the most common

pathogens were S. aureus (25.4%) and Klebsiella spp.
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Table 6. Antibiotic Resistance Pattern in Escherichia coli by Year a

Variables
Year

P-Value
2018 2019 2020 2021 2022 2023

Amikacin 0.008

S 0 (0.0) 3 (50.0) 6 (54.5) 17 (73.9) 22 (78.6) 10 (76.9)

I 4 (100.0) 2 (33.3) 3 (27.3) 2 (8.7) 3 (10.7) 0 (0.0)

R 0 (0.0) 1 (16.7) 2 (18.2) 4 (17.4) 3 (10.7) 3 (23.1)

Cefazolin < 0.001

S 1 (16.7) 0 (0.0) 4 (26.7) 6 (25.0) 6 (24.0) 4 (30.8)

I 5 (83.3) 3 (33.3) 3 (20.0) 2 (8.3) 5 (20.0) 9 (69.2)

R 0 (0.0) 6 (66.7) 8 (53.3) 16 (66.7) 14 (56.0) 0 (0.0)

I 2 (33.3) 3 (75.0) 7 (77.8) 7 (70.0) 8 (66.7) 6 (50.0)

R 3 (50.0) 0 (0.0) 1 (11.1) 2 (20.0) 1 (8.3) 0 (0.0)

Co-amoxiclav 0.056

S 0 (0.0) 0 (0.0) 4 (44.4) 1 (5.9) 3 (13.0) 2 (15.4)

I 3 (75.0) 4 (50.0) 5 (55.6) 7 (41.2) 8 (34.8) 3 (23.1)

R 1 (25.0) 4 (50.0) 0 (0.0) 9 (52.9) 12 (52.2) 8 (61.5)

Imipenem 0.010

S 2 (33.3) 3 (42.9) 3 (25.0) 4 (21.1) 16 (59.3) 8 (61.5)

I 2 (33.3) 1 (14.3) 5 (41.7) 6 (31.6) 9 (33.3) 0 (0.0)

R 2 (33.3) 3 (42.9) 4 (33.3) 9 (47.4) 2 (7.4) 5 (38.5)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).

(17.6%) (27).

Based on their findings, Klebsiella spp. exhibited a

marked increase in resistance to gentamicin (45% to

65%), colistin (< 1% to 20%), and aztreonam (3% to 56%)

(27). Similarly, the resistance rate of E. coli spp. to colistin

also increased (4% to 32%) (27). In clear contrast to Golli

et al., our results showed no significant change in the

frequency of gentamicin- and colistin-resistant K.

pneumoniae or the related resistance patterns (27). In

contrast to the present study, which highlighted only

one colistin-resistant K. pneumoniae isolate, a review

study reported an increasing rate of K. pneumoniae

resistance to colistin (median = 21.1%) during the

pandemic (20).

Our results indicated that the frequency of P.

aeruginosa peaked in 2020 (19.6%) and 2021 (22.6%).

Moreover, the resistance patterns of P. aeruginosa

against several cephalosporins (including ceftazidime

and cefepime), amikacin, ciprofloxacin, co-amoxiclav,

gentamicin, piperacillin, and meropenem significantly

altered during the COVID-19 pandemic. In this context, a

retrospective study by Albahrani et al. in Saudi Arabia

reported the frequencies of P. aeruginosa resistant to

both cephalosporins and carbapenems as 6.7%, 11.2%, 7%,

and 11%, respectively, from 2019 to 2022 (28). Similarly,

Serretiello et al. observed an increasing trend in the

resistance rate of P. aeruginosa to imipenem,

ceftazidime, and cefepime between 2020 and 2022 (29).

According to Serretiello et al., the resistance rate to

imipenem was 32.6%, which is lower than our findings

(29). In comparison with these two studies, our results

revealed that the resistance patterns of P. aeruginosa to

cefepime, ceftazidime, and meropenem changed

between 2018 and 2023. However, no significant trends

were observed for cefazolin, cefoxitin, cefotaxime,

ceftriaxone, and imipenem. On the other hand, a study

by Coseriu et al. in a tertiary hospital in Romania

suggested a decline in the frequency of Pseudomonas

spp. infections and resistance rates against

carbapenems, aminoglycosides, and fluoroquinolones

from 2020 to 2022 (30). These findings are comparable

to ours, which show the lowest P. aeruginosa resistance

to meropenem in 2020 (22.2%) and 2021 (20%). However,

our results also reported the highest prevalence of P.

aeruginosa during this period, as well as increased

imipenem resistance (50% in 2020 and 42.1% in 2021).

Coseriu et al. also attributed the improved antibiotic

sensitivity among Pseudomonas spp. to both preventive
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initiatives and the limitation of antibiotic abuse at that

medical center during the pandemic period (30).

Similarly, a meta-analysis study reported an association

between the lack of preventive initiatives against AMR

during the pandemic and increased AMR among gram-

negative organisms, including P. aeruginosa (17). These

findings highlight the potential impact of limiting

environmental pathogen sources and implementing

evidence-based antibiotic prescriptions in controlling P.

aeruginosa infections.

The COVID-19 pandemic has had a lesser impact on

AMR in gram-positive bacteria compared with Gram-

negative bacteria (18). Nevertheless, the trend of MDR

gram-positive bacteria has shown an increase similar to

that of gram-negative bacteria (19). Abdollahi et al.

conducted a retrospective study on 167 S. aureus

bacteremia samples collected from March 2020 to

March 2022 (31). The study reported the following

resistance frequencies for S. aureus: Vancomycin (0%),

clindamycin (69.5%), ciprofloxacin (77.2%), erythromycin

(80.8%), and penicillin (95.8%) (31). The results indicated

that ciprofloxacin-resistant S. aureus isolates were

associated with increased mortality rates and a

significant burden on hospitalized patients during the

COVID-19 pandemic (31). In comparison, the resistance

rates in our study were lower for clindamycin (30.8%),

ciprofloxacin (24.1%), erythromycin (16.7%), and

penicillin (27.6%) among S. aureus isolates. However, we

found vancomycin resistance to be more prevalent

(13.3%). Several studies have reported an increase in

methicillin-resistant S. aureus (MRSA) infections during

the pandemic (32, 33). On the other hand, Bentivegna et

al. observed a significant reduction in MRSA infections

during the pandemic, which was attributed to infection

prevention and control (IPC) practices (34).

Furthermore, a recent meta-analysis found no

association between MRSA incidence density and the

COVID-19 pandemic (17).

There are limited data regarding the impact of

COVID-19 on the AMR patterns of coagulase-negative

Staphylococcus (CoNS) species. In our study, CoNS species

were the most frequent Gram-positive pathogens (12.8%),

which contrasts with findings from the WHO-EMRO

region (including Iran), where S. aureus species are the

leading gram-positive cause of hospital-acquired

infections (35). These findings raise concerns about the

increasing trend of resistant CoNS species during the

pandemic and post-pandemic periods (35). In this study,

the prevalence of CoNS species was highest in the post-

COVID period (14.3% in 2022 and 21.3% in 2023).

Compared with our results, another retrospective study

revealed a notable increase in CoNS frequency (up to

11.22%) in the post-COVID-19 era (27). This study also

reported that CoNS was the most frequent pathogen

responsible for bloodstream infections during both the

pre- and post-COVID-19 periods (27). According to that

study, more than 90% of CoNS isolates were resistant to

penicillin, and more than 60% were resistant to

clindamycin and clarithromycin (27). In our study, CoNS

isolates were most resistant to ampicillin (71.4%),

ceftazidime (53.3%), penicillin (52.3%), ciprofloxacin

(47.8%), and ceftriaxone (42.3%), respectively. Another

retrospective study on blood culture specimens

collected from January 2018 to June 2021 revealed that

more than 50% of CoNS isolates from COVID-19-negative

patients were resistant to clindamycin and

erythromycin (35). However, our results demonstrated

that the resistance rates of CoNS species to clindamycin

and erythromycin were lowest during the pandemic

period and peaked in 2023. Moreover, the trend of CoNS

resistance to clindamycin significantly changed

between 2018 and 2023. This study had some limitations.

The retrospective design is important because

comprehensive demographic data, including previous

antibiotic treatment and clinical outcomes of the

patients, were not available. Furthermore, the data were

extracted from only one hospital, which might

influence the applicability of the results.

5.1. Conclusions

Although we have passed through the pandemic, its

consequences, such as changes in AMR trends, continue

to challenge the healthcare system. The data on AMR

alterations during the pandemic and post-pandemic

periods appear worryingly heterogeneous and

inconclusive. Most studies on this issue suggest an

increasing trend in AMR during this era. However, the

trend of AMR profiles for each microorganism remains

under discussion, as well as the differences in altered

AMR trends between high-income and low-income

countries. Coronavirus disease 2019 has significantly

influenced the resistance patterns of both gram-

negative and gram-positive MDR bacteria. Monitoring

adherence to guidelines is essential to prevent the

further prevalence of resistant strains, particularly in

low-income countries, where attitudes toward
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antibiotic prescription and hygiene standards need

improvement. This necessitates the strict

implementation of antibiotic prescriptions based on

updated guidelines and antimicrobial stewardship

programs in these countries to mitigate the further

emergence of AMR. We also recommend conducting

more observational studies to provide additional data

on post-COVID-19 AMR.
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Table 1. Antibiotic Resistance Patterns of Isolates a

Variables
Microorganism

Coagulase-Negative Staphylococcus Pseudomonas aeruginosa Klebsiella pneumoniae Staphylococcus aureus Escherichia coli Others

Ampicillin

S 4 (8.2) 3 (10.0) 8 (11.9) 4 (13.3) 8 (11.3) 12 (24.5)

I 10 (20.4) 16 (53.3) 42 (62.7) 7 (23.3) 41 (57.7) 20 (40.8)

R 35 (71.4) 11 (36.7) 17 (25.4) 19 (63.3) 22 (31) 17 (34.7)

Amikacin

S 32 (69.6) 22 (43.1) 49 (55.7) 4 (44.4) 58 (68.2) 17 (47.2)

I 7 (15.2) 3 (5.9) 11 (12.5) 3 (33.3) 14 (16.5) 4 (11.1)

R 7 (15.2) 26 (51) 28 (31.8) 2 (22.2) 13 (15.3) 15 (41.7)

Cefazolin

S 2 (7.7) 2 (5.7) 11 (14.1) 4 (13.8) 21 (22.8) 3 (10.3)

I 17 (65.4) 16 (45.7) 47 (60.3) 15 (51.7) 27 (29.3) 13 (44.8)

R 7 (26.9) 17 (48.6) 20 (25.6) 10 (34.5) 44 (47.8) 13 (44.8)

Cefepime

S 8 (25.8) 14 (28.6) 21 (24.1) 11 (40.7) 30 (44.8) 14 (33.3)

I 19 (61.3) 33 (67.3) 62 (71.3) 16 (59.3) 30 (44.8) 25 (59.5)

R 4 (12.9) 2 (4.1) 4 (4.6) 0 (0) 7 (10.4) 3 (7.1)

Cefoxitin

S 11 (28.9) 2 (10) 6 (14) 12 (40) 13 (24.5) 7 (22.6)

I 21 (55.3) 11 (55) 33 (76.7) 14 (46.7) 33 (62.3) 19 (61.3)

R 6 (15.8) 7 (35) 4 (9.3) 4 (13.3) 7 (13.2) 5 (16.1)

Ceftazidime

S 6 (20.0) 14 (28) 21 (23.9) 6 (25) 28 (39.4) 9 (25)

I 8 (26.7) 34 (68) 63 (71.6) 13 (45.2) 37 (52.1) 20 (55.6)

R 16 (53.3) 2 (4) 4 (4.5) 5 (20.8) 6 (8.5) 7 (19.4)

Ceftriaxone

S 3 (11.5) 5 (10.2) 14 (17.5) 5 (17.2) 16 (23.5) 7 (17.5)

I 12 (46.2) 42 (85.7) 53 (66.3) 14 (48.3) 35 (51.5) 21 (52.5)

R 11 (42.3) 2 (4.1) 13 (16.3) 10 (34.5) 17 (25) 12 (30)

Ciprofloxacin

S 8 (17.4) 30 (58.8) 23 (24.7) 5 (17.2) 34 (34) 10 (22.2)

I 16 (34.8) 20 (39.2) 60 (64.5) 17 (58.6) 51 (51) 28 (62.2)

R 22 (47.8) 1 (2.0) 10 (10.8) 7 (24.1) 15 (15) 7 (15.6)

Clindamycin

S 11 (36.7) 0 (0.0) 0 (0.0) 2 (5.4) - 1 (20)

I 8 (26.7) 0 (0.0) 0 (0.0) 7 (53.8) - 2 (40)

R 11 (36.7) 0 (0.0) 0 (0.0) 4 (30.8) - 2 (40)

Co-Amoxiclav

S 4 (8.2) 6 (12.8) 7 (8.1) 2 (6.7) 10 (13.5) 4 (9.8)

I 23 (46.9) 23 (48.9) 47 (54.7) 18 (60.0) 30 (40.5) 19 (46.3)

R 22 (44.9) 18 (38.3) 32 (37.2) 10 (33.3) 34 (45.9) 18 (43.9)

Colistin

S - 11 (84.6) 24 (85.7) 1 (50.0) 6 (85.7) 17 (100)

I - 2 (15.4) 3 (10.7) 1 (50.0) 1 (14.3) 0 (0)

R - 0 (0.0) 1 (3.6) 0 (0.0) 0 (0) 0 (0)

Erythromycin

S 7 (22.6) - 1 (100.0) 1 (5.6) 0 (0) 0 (0)

I 17 (54.8) - 0 (0.0) 14 (77.8) 1 (100) 3 (75)

R 7 (22.6) - 0 (0.0) 3 (16.7) 0 (0) 1 (25)

Imipenem

S 11 (35.5) 9 (17.6) 29 (32.2) 8 (30.8) 36 (42.9) 13 (31)

I 17 (54.8) 21 (41.2) 41 (45.6) 17 (65.4) 23 (27.4) 29 (69)
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Variables

Microorganism

Coagulase-Negative
Staphylococcus

Pseudomonas
aeruginosa

Klebsiella
pneumoniae

Staphylococcus
aureus

Escherichia
coli

Others

R 3 (9.7) 21 (41.2) 20 (22.2) 1 (3.8) 25 (29.8) 0 (0)

Gentamicin

S 13 (27.7) 10 (30.3) 25 (-) 15 (51.7) 38 (50.0) 15 (41.7)

I 20 (42.6) 18 (54.5) 51 (32.9) 14 (48.3) 37 (48.7) 21 (58.3)

R 14 (29.8) 5 (15.2) 0 (0) 0 (0) 1 (1.3) 0 (0)

Linezolid

S 35 (77.8) - - 7 (77.8) - 9 (100)

I 7 (15.6) - - 2 (22.2) - 0 (0)

R 3 (6.7) - - 0 (0.0) - 0 (0)

Meropenem

S 6 (21.4) 3 (7.0) 13 (16.5) 8 (27.6) 20 (25.3) 4 (9.5)

I 20 (71.4) 22 (51.2) 49 (62.0) 20 (9.0) 37 (46.8) 36
(85.7)

R 2 (7.1) 18 (41.9) 17 (21.5) 1 (3.4) 22 (27.8) 2 (4.8)

Nitrofurantoin

S 2 (50.0) 0 (0) 44 (46.8) 15 (50) 72 (72.7) 12 (66.7)

I 1 (25.0) 1 (33.3) 39 (41.5) 12 (40) 15 (15.2) 5 (27.8)

R 1 (25.0) 2 (66.7) 11 (11.7) 3 (10) 12 (12.1) 1 (5.6)

Oxacilin

S 6 (35.3) - - 6 (85.7) - -

I 8 (47.1) - - 1 (14.3) - -

R 3 (17.6) - - 0 (0) - -

Penicillin

S 0 (0.0) - 0 (0) 2 (6.9) - 2 (22.2)

I 21 (47.7) - 1 (100) 19 (65.5) - 6 (66.7)

R 23 (52.3) - 0 (0) 8 (27.6) - 1 (11.1)

Piperacillin

S 7 (25.9) 10 (21.3) 9 (12.3) 11 (39.3) 17 (28.3) 12 (33.3)

I 14 (51.9) 24 (51.1) 55 (75.3) 14 (50) 31 (51.7) 22 (61.1)

R 6 (22.2) 13 (27.7) 9 (12.3) 3 (10.7) 12 (20) 2 (5.6)

Piperacillin-tazobactam

S 0 (0.0) 3 (37.5) 1 (100) - 1 (100) 1 (100)

I 1 (100.0) 4 (50) 0 (0) - 0 (0) 0 (0)

R 0 (0.0) 1 (12.5) 0 (0) - 0 (0) 0 (0)

Rifampin

S 17 (70.8) - 1 (100) 17 (77.3) 1 (100) 3 (50)

I 6 (25.0) - 0 (0) 5 (22.7) 0 (0) 3 (50)

R 1 (4.2) - 0 (0) 0 (0) 0 (0) 0 (0)

Trimethoprim-
sulfamethoxazol

S 4 (33.3) - 1 (8.3) 2 (40) 2 (16.7) 0 (0)

I 7 (58.3) - 11 (91.7) 3 (60) 10 (83.3) 7 (100)

R 1 (8.3) - 0 (0) 0 (0) 0 (0) 0 (0)

Vancomycin

S 26 (54.2) - 1 (100) 16 (53.3) 1 (100) 9 (69.2)

I 11 (22.9) - 0 (0) 10 (33.3) 0 (0) 4 (30.8)

R 11 (22.9) - 0 (0) 4 (13.3) 0 (0) 0 (0)

Abbreviations: S, sensitive; I, intermediate; R, resistant.

a Values are expressed as No. (%).
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