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Abstract

Background: Dental caries, driven by biofilm-forming Streptococcus mutans, remains a significant global health issue.

Traditional treatments like chlorhexidine (CHX) are effective but associated with side effects, prompting interest in alternatives

such as photodynamic therapy (PDT) and cold atmospheric plasma (CAP).

Objectives: To compare the antibacterial efficacy of PDT at two wavelengths (810 nm and 660 nm) with different

photosensitizers [indocyanine green (ICG) and methylene blue (MB)], CAP treatment, and CHX against S. mutans.

Methods: An in vitro study was performed using 13 groups: CHX, PDT with or without photosensitizers, CAP (90 - 180 s), and

controls. Colony-forming units (CFUs) were measured post-treatment, and data were analyzed using one-way ANOVA and

Tamhane’s T2 test in SPSS26.

Results: All treatments significantly reduced CFUs compared to the untreated control (mean CFUs = 2105 ± 151.10; P < 0.001).

The CHX completely inhibited S. mutans (0.00 ± 0.00 CFUs; P < 0.001), followed by PDT 810 nm + ICG (23.5 ± 11.67 CFUs, P = 0.028),

CAP 180 s (36.75 ± 18.87 CFUs, P = 0.030), and PDT 660 nm + MB (39.25 ± 5.62 CFUs, P = 0.001). The ICG or MB alone and laser alone

showed significantly higher CFU counts (P < 0.05).

Conclusions: While CHX remains highly effective, PDT and CAP can present promising alternatives with fewer side effects.

Photodynamic therapy, particularly with 810 nm ICG, and extended CAP exposure could serve as adjunctive therapy for S. mutans

control.
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1. Background

Dental caries remain a major global health concern,

primarily due to biofilm formation by Streptococcus

mutans in the oral cavity (1, 2). Streptococcus mutans

contributes to tooth decay by converting dietary sugars

into acids, leading to enamel demineralization and

cavity formation (3, 4). Current preventative measures,

such as fluoride treatments and improved oral hygiene,

are not always effective in controlling the bacterial

colonization responsible for dental caries (5-7). This has

led to a growing interest in alternative therapies like

photodynamic therapy (PDT) and cold plasma

treatment as adjuncts to traditional methods (8-11).

Although PDT and cold atmospheric plasma (CAP) have

individually demonstrated antimicrobial efficacy (9, 12,

13), there is a distinct lack of studies that directly

compare these two modalities under standardized

conditions. In particular, comparative data evaluating

different PDT wavelengths and photosensitizers

alongside CAP exposure durations against S. mutans are

scarce. This gap limits our understanding of which
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parameters may offer the greatest antibacterial effect

and hinders translation into clinical protocols.

Chlorhexidine (CHX) is a well-established

antimicrobial and the gold standard in dentistry due to

its broad-spectrum bactericidal activity (14). However,

despite its effectiveness, CHX is associated with several

side effects, including staining of teeth and oral tissues,

taste alteration, and cytotoxic effects on human cells.

These limitations have led to the exploration of newer,

non-toxic alternatives that could provide effective

bacterial control while minimizing adverse effects (15-

17).

Photodynamic therapy is a non-invasive therapy that

uses a photosensitizing agent, such as methylene blue

(MB) or indocyanine green (ICG), activated by light at

specific wavelengths. This activation generates reactive

oxygen species (ROS) that damage bacterial cell walls

and proteins (18-20). Studies have demonstrated PDT’s

potential against dental pathogens, but the

effectiveness can vary based on the wavelength used and

the specific photosensitizer employed (9). In this study,

the 660 nm wavelength was selected for its strong

activation of MB, a widely used photosensitizer with

proven efficacy against gram-positive bacteria and

excellent ROS yield. The 810 nm wavelength was chosen

for its compatibility with ICG, which offers deeper tissue

penetration and selective bacterial uptake. Both MB and

ICG have been well-studied in dental applications, with

favorable safety profiles and photophysical properties

that make them suitable for antimicrobial PDT (9, 18-20).

Cold atmospheric plasma has emerged as another

promising antimicrobial treatment (12). Cold plasma

generates a combination of reactive species, UV

radiation, and charged particles that can disrupt

microbial biofilms without causing significant harm to

surrounding tissue (21, 22). While PDT and cold plasma

have been investigated individually, direct comparative

studies evaluating their efficacy on S. mutans are limited

(23-26). Previous research has largely focused on either

PDT or plasma as standalone treatments, without

examining the potential differences in effectiveness

between various wavelengths of light in PDT or

comparing them to plasma. For example, studies by

Ahrari et al. (27) and Bueno-Silva et al. (28) have explored

the use of PDT against S. mutans, but they did not

consider different wavelengths within the same

experimental framework. Similarly, research on cold

plasma has shown significant antimicrobial effects on

dental pathogens, but the potential for combining or

comparing these modalities remains underexplored.

2. Objectives

Given this gap in the literature, the present study

aims to compare the antibacterial effects of PDT at two

different wavelengths (810 nm and 660 nm) using two

photosensitizers (ICG and MB) with cold plasma

treatment and CHX against S. mutans. This comparison

will provide insights into the more effective method for

reducing bacterial populations, potentially guiding

future dental treatments.

3. Methods

3.1. Study Design and Sample Size Determination

This study was designed as an in vitro experimental

study. The sample size was determined based on

findings from Nima et al. (29) using a one-way ANOVA

power analysis conducted in PASS11 software (NCSS, LLC,

Utah, USA), which was selected for its reliability and

precision in computing power analyses across various

experimental designs. The analysis applied an alpha

level (α) of 0.05, a beta level (β) of 0.2, an effect size of

1.13, and an estimated standard deviation of 0.48 for the

logarithmic colony counts of S. mutans. Results

indicated that at least four samples per group across the

13 experimental groups were necessary to ensure

sufficient statistical power.

3.2. Sample Preparation

All samples were prepared using the standard strain

S. mutans (ATCC str.m 1683), which was acquired from

the Pasteur Institute in Tehran. Bacterial samples were

diluted in sterile saline, and swabs saturated with S.

mutans were inoculated onto petri dishes with 5% sheep

blood agar. The cultures were incubated aerobically at

37°C for 48 hours. Streptococcus mutans was then diluted

to a 0.5 McFarland standard (approximately 1.5 × 108

bacteria/mL) and dispensed into wells of 96-well

microplates (30, 31).

3.3. Experimental Groups

The prepared bacterial samples were divided into 13

experimental groups:

- Group 1 - positive control group: 0.5 McFarland S.

mutans suspension with no treatment.

https://brieflands.com/articles/archcid-160774


Yeganehfard H et al. Brieflands

Arch Clin Infect Dis. 2025; 20(4): e160774 3

- Group 2 - negative control group: No sample with no

treatment.

- Group 3 - ICG group: 0.5 mL of ICG (Sina Pishgam-

Darou Co., Iran) at a concentration of 0.2% without laser

irradiation (32).

- Group 4 - MB group: 0.5 mL of MB (Merck, Germany)

at a concentration of 0.02% without laser irradiation

(30).

- Group 5 - 810 nm laser irradiation group: 60-second

810 nm laser irradiation without any photosensitizer.

- Group 6 - 660 nm laser irradiation group: 100-

second 660 nm laser irradiation without any

photosensitizer.

- Group 7 - 810 nm laser irradiation with ICG group:

0.5 mL of ICG at a concentration of 0.2% with 60-second

810 nm laser irradiation.

- Group 8 - 660 nm laser irradiation with MB group:

0.5 mL of MB at a concentration of 0.02% with 100-

second 660 nm laser irradiation.

- Group 9 - 90 seconds CAP treatment.

- Group 10 - 120 seconds CAP treatment.

- Group 11 - 150 seconds CAP treatment.

- Group 12 - 180 seconds CAP treatment.

- Group 13 - CHX group: 0.1 mL of CHX at a

concentration of 2% (DarouPakhsh, Iran) was added to

the bacterial suspension as the gold standard treatment

for S. mutans (14).

3.4. Laser Parameters

In the 810 nm laser groups, a Fox 810 nm laser device

(Germany) with a power output of 100 mW and an

energy density (ED) of 12 J/cm2 was utilized for 60

seconds. The diameter of the laser tip was 0.8 cm (30). In

the 660 nm laser groups, a Sirona 660 nm laser device

(Germany) with a power output of 100 mW and an ED of

20 J/cm2 was utilized for 100 seconds. The diameter of

the laser tip was 0.8 cm (9). The ED of all laser devices

was calculated using the following formula (33):

In all samples, the laser beam was directed

tangentially at the openings of the wells.

3.5. Cold Atmospheric Plasma Parameters

In CAP-treated groups, 30 µL of cell suspension was

placed into selected wells of 96-well microtiter plates,

with plasma treatment lasting for 90, 120, 150, and 180

seconds (34). Plasma treatment was conducted with the

PlasmArt device (Nariatech, Iran), which ionized helium

gas within a dielectric chamber to produce cold plasma.

The device operated at an inlet pressure of 4.5 bar, with a

gas flow rate of 1.85 cm3/s, a power output of 8 W, and a

handpiece frequency of 100 kHz. The plasma flame

measured 21 mm in length and 2.5 mm in diameter, with

voltage adjusted up to 10 kV. A manometer monitored

the gas output pressure.

3.6. Colony Count

To assess the bactericidal effects of the treatments, 10

µL of untreated and treated bacterial suspensions were

inoculated onto separate blood agar plates. The plates

were incubated at 37°C for 48 hours to promote colony

growth. After incubation, colonies of S. mutans were

counted to determine colony-forming units (CFU/mL),

providing a measure of bacterial viability post-

treatment. Colony counts were conducted using a

colony counter, and the results were recorded for

subsequent statistical analysis (30, 35).

3.7. Data Analysis

Statistical analyses were conducted using SPSS

software version 26. A one-way ANOVA was used to

compare the CFU/mL counts across the different

experimental groups. Post-hoc comparisons were

performed using the Tamhane test when appropriate. A

P-value of less than 0.05 was considered statistically

significant, indicating a meaningful difference between

the treatment groups.

4. Results

Figure 1 illustrates the mean colony counts across the

experimental groups. A statistically significant

difference in colony counts was observed among the

groups (P < 0.001). The CHX-treated group exhibited the

lowest mean colony count (0.00 ± 0.00), followed

closely by the group treated with 810 nm laser with ICG

(23.5 ± 11.67), 180-second CAP treatment (36.75 ± 18.87),

and the group treated with 660 nm laser with MB (39.25

± 5.62). The highest colony counts were recorded in the

positive control group (no treatment; 2105 ± 151.10) and

the ICG group without laser irradiation (1264 ± 165.04).

Tables 1 to 3 presents the pairwise comparisons of S.

mutans CFU/mL across the treatment groups. Results

indicate that all treatment methods significantly

reduced colony counts compared to the positive control

ED  =  Power  ×  T ime/Area of the irradiation
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Figure 1. The mean colony counts across the experimental groups

group (P < 0.05). The CHX-treated group showed a

notably lower colony count than other treatments,

underscoring its superior efficacy (P < 0.05).

In addition, the results indicated that, regardless of

the exposure time in the CAP-treated groups or the type

of photosensitizer used (either ICG or MB) in the laser-

treated groups, all CAP-treated groups and laser

irradiations combined with photosensitizers resulted in

significantly lower colony counts compared to the 660

nm laser irradiation alone or ICG alone (P < 0.05). When

comparing different laser irradiation groups, no

statistically significant difference was found between

the 660 nm and 810 nm lasers when photosensitizers

were not used (P > 0.05). Similarly, no statistically

significant differences were found between CAP

exposure times, although the 180-second exposure

resulted in lower mean colony counts compared to the

150-, 120-, and 90-second exposures (36.75 ± 18.87, 61.50 ±

19.29, 115.75 ± 25.01, and 120 ± 40.62, respectively). When

photosensitizer was applied alone, MB showed a

significantly lower colony count than ICG (mean colony

count, MB = 43.25 ± 13.27, ICG = 1264.5 ± 165.04, and P =

0.03).

5. Discussion

This study evaluated the antibacterial efficacy of PDT

with 810 nm and 660 nm lasers, CAP treatment at

varying exposure times, and CHX against S. mutans

colonies. Results revealed significant bacterial

reduction across all treatments compared to the control

group, with CHX achieving complete eradication of

colonies, followed by PDT with the 810 nm laser

combined with ICG as a photosensitizer, CAP at 180

seconds, and PDT with the 660 nm laser combined with

MB as a photosensitizer. Each treatment’s unique

mechanism of action contributes to its respective

antibacterial efficacy, underscoring their potential as an

alternative or adjunctive antimicrobial treatment in

clinical applications.

Chlorhexidine displayed the highest antibacterial

efficacy, resulting in zero detectable mean colony

counts. Known for its rapid and broad-spectrum action,

CHX disrupts bacterial cell membranes and binds

strongly to negatively charged cell surfaces, leading to

cell death (36-38). These characteristics make it the gold

standard in dental antimicrobial treatments,

particularly effective in biofilm-associated infections (14-

16, 39). However, CHX’s side effects, including tooth

staining, taste alteration, and cytotoxicity, present

limitations in long-term or widespread use,

underscoring the need for alternative therapies (15, 39).

In this study, PDT with the 810 nm laser and ICG

demonstrated high bactericidal activity, reducing S.

mutans colony counts to levels comparable to CHX. The
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Table 1. Laser Groups Pairwise Comparisons and Their P-values

Groups P-Value

Positive control

ICG 0.016 a

810 nm laser 0.004 b

810 nm laser with ICG 0.005 b

MB 0.005 b

660 nm laser 0.013 a

660 nm laser with MB 0.006 b

810 nm laser with ICG

ICG 0.033 a

810 nm laser 0.065

MB 0.979

660 nm laser 0.002 b

660 nm laser with MB 0.978

90 (s) CAP 0.541

120 (s) CAP 0.109

150 (s) CAP 0.676

180 (s) CAP 1.000

660 nm laser with MB

ICG 0.035 a

810 nm laser 0.070

MB 1.000

660 nm laser 0.003 b

90 (s) CAP 0.781

120 (s) CAP 0.325

150 (s) CAP 0.997

180 (s) CAP 1.000

810 nm laser

ICG 0.994

MB 0.068

660 nm laser 1.000

90 (s) CAP 0.060

120 (s) CAP 0.076

150 (s) CAP 0.069

180 (s) CAP 0.064

660 nm laser

ICG 0.995

MB 0.002 b

90 (s) CAP 0.000 c

120 (s) CAP 0.000 c

150 (s) CAP 0.001 b

180 (s) CAP 0.001 b

Abbreviations: CAP, cold atmospheric plasma; ICG, indocyanine green; MB, methylene blue.

a P < 0.05.

b P ≤ 0.01.

c P < 0.001.

effectiveness of PDT with ICG under the 810 nm

wavelength can be attributed to enhanced ROS

generation, which is critical for bacterial inactivation

(40). Activated by the 810 nm laser, ICG produces singlet
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Table 2. Cold Plasma Groups Pairwise Comparisons and Their P-Values

Groups P-Value

Positive control

90 (s) CAP 0.003 
a

120 (s) CAP 0.005 
a

150 (s) CAP 0.005 a

180 (s) CAP 0.005 
a

180 (s) CAP

ICG 0.032 
b

MB 1.000

810 nm laser 0.064

810 nm laser with ICG 1.000

660 nm laser 0.001 
a

660 nm laser with MB 1.000

90 (s) CAP 0.642

120 (s) CAP 0.148

150 (s) CAP 0.999

150 (s) CAP

ICG 0.033 b

MB 1.000

810 nm laser 0.069

810 nm laser with ICG 0.676

660 nm laser 0.001 a

660 nm laser with MB 0.997

90 (s) CAP 0.958

120 (s) CAP 0.572

120 (s) CAP

ICG 0.035 b

MB 0.232

810 nm laser 0.076

810 nm laser with ICG 0.109

660 nm laser 0.000 c

660 nm laser with MB 0.325

90 (s) CAP 1.000

90 (s) CAP

ICG 0.026 b

MB 0.777

810 nm laser 0.060

810 nm laser with ICG 0.541

660 nm laser 0.000 c

660 nm laser with MB 0.781

Abbreviations: CAP, cold atmospheric plasma; ICG, indocyanine green; MB, methylene blue.
a P ≤ 0.01.

b P < 0.05.
c P < 0.001.

oxygen and other ROS that cause extensive damage to

bacterial cell membranes and intracellular structures.

The deep penetration of the 810 nm wavelength enables

the laser to target bacteria within deeper tissue layers,

while ICG’s hydrophilic properties facilitate its binding

to bacterial cells, ensuring selective targeting with

minimal collateral damage (40, 41). These properties

position 810 nm PDT with ICG as a promising, targeted

approach for clinical use.

Our study found that ICG alone was ineffective in

reducing S. mutans colonies, consistent with existing

literature that emphasizes ICG's reliance on light

activation to produce ROS for antimicrobial action (40,

41). Studies, such as by Kim et al. (32), confirm that ICG

requires specific laser activation, like the 810 nm

wavelength, to achieve bactericidal effects, particularly

against biofilms. Without this activation, ICG lacks

intrinsic antibacterial properties, underscoring the

importance of using it in combination with appropriate

laser irradiation for effective antimicrobial treatment

(40-42).

Among CAP-treated groups, the 180-second exposure

produced the lowest colony counts, illustrating the

advantages of longer CAP treatment durations. CAP

operates by generating ROS, reactive nitrogen species

(RNS), and UV photons, which act synergistically to

cause oxidative stress, disrupt cell membranes, and

damage bacterial DNA (12, 19, 21). Longer exposure times

allow for a sustained release and accumulation of these

reactive species, intensifying oxidative damage to

bacterial cells. This prolonged interaction increases ROS

and RNS concentrations around bacterial cells,

overwhelming bacterial defenses and ensuring a more

comprehensive inactivation (19).
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Table 3. Chlorhexidine Group Pairwise Comparisons and Their P-Values

Groups P-value

CHX

Positive control 0.000 a

ICG 0.001 b

810 nm laser 0.001 b

810 nm laser with ICG 0.028 c

MB 0.007 b

660 nm laser 0.000 a

660 nm laser with MB 0.001 b

90 (s) CAP 0.010 c

120 (s) CAP 0.003 b

150 (s) CAP 0.008 b

180 (s) CAP 0.030 c

810 nm laser 0.070

MB 1.000

660 nm laser 0.003 b

90 (s) CAP 0.781

120 (s) CAP 0.325

150 (s) CAP 0.997

Abbreviations: CAP, cold atmospheric plasma; ICG, indocyanine green; CHX, chlorhexidine; MB, methylene blue.

a P < 0.001.

b P ≤ 0.01

c P < 0.05.

Extended CAP exposure times are particularly

beneficial for biofilm-associated bacteria (43). In

biofilms, bacteria are encased within an extracellular

matrix, which can impede the penetration of reactive

species during shorter treatments. The sustained action

from longer CAP exposure overcomes this barrier,

allowing ROS and RNS to penetrate deeper into biofilm

layers and reach bacteria that might evade shorter

treatments (19, 43). Additionally, prolonged exposure

reduces the potential for bacterial recovery or resistance

by applying continuous oxidative stress, exhausting

bacterial repair mechanisms and leading to more

extensive cell death. This sustained action makes CAP,

especially with extended durations, a powerful option

for treating biofilm-related infections (12, 19, 21, 43).

Similar to the results of our study, Suhail Ali et al. (44)

demonstrated CAP’s efficacy in reducing S. mutans

biofilms, emphasizing its biofilm penetration ability

and robust bactericidal effects, especially with longer

exposure times. Similarly, Figueira et al. found that CAP

treatments could significantly reduce bacterial loads

across a range of pathogens, with effects comparable to

traditional antimicrobials in some cases (25, 45).

The findings demonstrated that the 660 nm laser

combined with MB had significantly greater bactericidal

efficacy than ICG. Methylene blue’s superior

performance can be attributed to its higher ROS yield

when activated by 660 nm light and its strong binding

affinity for bacterial cell membranes (35). As a positively

charged molecule, MB effectively adheres to the

negatively charged bacterial cell surface, resulting in

targeted ROS generation that disrupts membrane

integrity, proteins, and DNA. Methylene blue’s stability

under light exposure further ensures a sustained

bactericidal effect throughout the PDT session,

enhancing its efficacy against S. mutans. These

properties underscore MB’s potential as a highly

effective photosensitizer in PDT applications,

particularly in low-oxygen environments, such as

biofilms, where anaerobic pathogens thrive (35, 46).

The 660 nm laser without a photosensitizer

produced significantly higher colony counts than PDT

and CAP treatments, underscoring the limited efficacy
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of laser irradiation alone. Without a photosensitizer to

generate ROS, the 660 nm laser lacks the primary

mechanism for bacterial inactivation, resulting in

minimal impact on colony counts (9, 35, 47). Moreover,

the power level of the 660 nm laser in this study might

be insufficient to induce a thermal effect capable of

disrupting bacterial cells, reinforcing the need for

photosensitizers like MB or ICG in PDT applications (9,

18).

While PDT and CAP demonstrated strong

antibacterial effects in this study, several practical

challenges may limit their widespread clinical

implementation. These include high initial equipment

costs, the need for specific consumables (e.g., lasers,

photosensitizers, plasma devices), and ongoing

maintenance expenses. Moreover, access to such

technologies is limited in many dental clinics, especially

in resource-constrained settings (48). Unlike CHX, which

is inexpensive, readily available, and simple to use

without specialized training, both PDT and CAP require

operator expertise, treatment planning, and careful

parameter control. Additionally, limited clinician

training and the absence of standardized protocols or

strong clinical guideline endorsements may hinder

adoption (17, 18, 21, 48). These factors should be carefully

considered when evaluating the feasibility of

integrating PDT and CAP into routine dental care,

especially when compared to the established

practicality of CHX.

While this study provides valuable insights into the

bactericidal effects of PDT, CAP, and CHX, certain

limitations should be acknowledged. The study was

conducted in vitro, and as with all in vitro studies, there

are inherent limitations related to the controlled

laboratory environment that may introduce bias. The

absence of host factors such as saliva flow, immune

responses, and oral microbiome interactions may over-

or under-estimate the true efficacy of PDT and CAP in

vivo. Furthermore, biofilm behavior and treatment

diffusion in clinical conditions may differ significantly

from static in vitro setups. These factors should be

considered when interpreting the results and planning

for future in vivo studies. Additionally, the study focused

on S. mutans, which, while relevant, may not reflect the

responses of other clinically relevant bacteria.

Incorporating a broader range of bacterial species and

biofilm models would provide a more comprehensive

understanding of these treatments. Furthermore, while

standardized parameters were used for CAP and laser

treatments, variations in CAP gas type, exposure times,

or laser power levels may yield different results,

warranting additional dose-response studies to

optimize treatment efficacy.

5.1. Conclusions

In conclusion, while CHX remains the gold standard

due to its exceptional bactericidal properties, PDT and

CAP represent valuable additions to antimicrobial

treatment options. The unique antibacterial

mechanisms and respective strengths of each modality

provide clinicians with flexible, effective tools for

managing a variety of bacterial infections. Future

research, including in vivo studies, optimization of

photosensitizer concentrations, and fine-tuning CAP

exposure times, will be crucial to fully realizing the

clinical potential of PDT and CAP as safe, effective

antimicrobial therapies.
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