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Abstract

Background: Meningitis is one of the most disturbing infectious diseases due to mortality, morbidity and its ability to cause epi-
demic.
Objectives: The current study aimed to detect and remove explainable patterns of fever and neurological symptoms as suspected
meningitis occurred in Hamadan province, West of Iran.
Materials and Methods: Monthly and daily data of suspected cases of meningitis of Iranian national surveillance system from
21st March 2010 to 20th March 2013 were used. explainable patterns of syndrome were identified using autocorrelation and partial
autocorrelation functions, mean differences and nonparametric Mann-Kendall statistics. Besides moving average (MA) smoothing
methods, Holt-Winters (HW) exponential smoothing and the Poisson regression model were used to remove such patterns.
Results: The study findings indicated the presence of explainable patterns including day-of-the-week (DOW), weekend, holiday ef-
fects, seasonality and temporal trend in the syndromic data of fever and neurological symptoms. Overall, HW exponential and
regression method had better performances to remove explainable patterns.
Conclusions: Addressing and removing explainable patterns of syndromic data on meningitis is necessary to timely and accurately
detection of meningitis epidemics. It was concluded that decomposition methods had better performance compared to the model
based ones.
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1. Background

Meningitis disease typically results from contagious
infections (1). Meningitis disease outbreaks can inflict
damage and spread quickly (2). Controlling this disease is
possible only though establishing a dynamic surveillance
system, and accurate and updated reporting (3). Public
health surveillance systems aim at detecting outbreaks us-
ing syndromic data (4). Routinely syndromic surveillance
systems use outbreak detection algorithms for real time
detection of outbreaks (5, 6). Data on fever and neurologi-
cal symptoms of meningitis such as all pre-diagnostic data
might have two patterns including: explainable patterns, i
e, temporal dependency, day-of-the-week (DOW) effect, hol-
iday effect and weekend effect; and unexplainable patterns
which encompass actual decrease or increase in the data
(4, 7).

The meningitis’s surveillance system in Iran estab-
lished by the ministry of health and medical education
in 1981 uses syndromic data, i e, fever and neurologic syn-

drome, as a pre-diagnostic data source to detect meningitis
outbreaks and monitoring its trends (3). Monitoring tools
or outbreak detection methods used for this purpose have
two main assumptions i e, independent and identical dis-
tributions. Generally, the presence of explainable patterns
in the pre-diagnostic data sources such as syndromic data
in the meningitis surveillance system lead to some issues
true alarms or outbreaks (8). One of the issues is violation
from the above assumptions and the second issue is mask-
ing the unexplainable patterns such as outbreaks or pro-
ducing false alarms (9).

Therefore, monitoring such pre-diagnostic data as sus-
pected meningitis cases requires an initial detection and
removal of such explainable patterns. The process of re-
moving explainable patterns in the literature is called pre-
processing methods (10). These methods fall under the
general umbrella of model-based and data-driven meth-
ods. Holt-Winters (HW) exponential smoothing is a data-
driven method presented in detail in the methods section
(11).
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Applying outbreak detection methods to the raw and
syndromic data without removing the explainable pat-
terns incapacitates the surveillance systems to detect and
respond to the potential alarms in a timely manner by con-
sidering the challenge of applying outbreak detection al-
gorithms to the fever and neurologic syndromic data as
a pre-diagnostic data source with neither removing such
patterns nor assessing violations from the independent
and identical distribution in the meningitis surveillance
system.

2. Objectives

The current study aimed to detect and remove the ex-
plainable patterns of the daily counts of suspected cases of
meningitis in Hamadan province, Iran.

3. Materials and Methods

3.1. Data

Data on daily counts of the fever and neurologic symp-
toms of meningitis were obtained from national surveil-
lance system from 21st March (the first day of Iranian so-
lar Hijri-Shamsi calendar and Nowruz, the Iranian tradi-
tional New Year) 2010 to 20th March 2013 in Hamadan
province, West of Iran. Also data on monthly counts sus-
pected cases of meningitis were obtained from national
surveillance system from March to April (the first month
of Hijri-Shamsi calendar) 2004 and February - March 2013
in Hamadan province. In Iran, working days are Saturday
to Wednesday; Thursday and Friday are weekends. Menin-
gitis is considered as notifiable diseases and by definition
when a suspected case of meningitis is detected by a health
care provider, it must be reported as a clinical case. Sus-
pected cases of meningitis are defined as individuals with
clinical findings including an illness with sudden onset of
fever (> 38.5°C rectal or 38.0°C axillary) and one of the fol-
lowing signs: neck stiffness, altered consciousness or other
meningeal signs (neurologic signs). Such cases are re-
ported to upper levels of the surveillance system daily. Dur-
ing the study period, from 21st March 2010 to 20th March
2013, 1506 meningitis suspected cases on daily basis were
reported to the national surveillance system in Hamadan
province.

3.2. Tools to Detect Explainable Patterns

To detect explainable patterns including DOW, holiday
and weekend effects, different methods such as autocor-
relation function (ACF), partial autocorrelation function
(PACF), mean differences and Mann-Kendall test were used.

Autocorrelation function and partial autocorrelation
function: ACF, PACF and related autocorrelogram at vari-
ous lags were used to highlight cyclical effects and depen-
dence time. Possible daily, weekly, monthly and annual
cyclic patterns were shown at lag 1, 7, 30 and 365, respec-
tively. Larger values of autocorrelation indicate the exis-
tence of the DOW effect and the presence of temporal pat-
tern. Statistical significance of such patterns and white-
noise are tested using the portmanteau (Q) statistics (12,
13).

3.3. Mann-Kendall Nonparametric Statistics

The statistics was used to determine the linear, non-
linear and seasonal trends (14).

Deviation from the normal assumptions was investi-
gated using the Skewness and Kurtosis values. Greater de-
viations from zero for the statistics indicate abnormal dis-
tribution.

3.4. Tools to Remove Explainable Patterns

HW exponential smoothing: HW exponential smooth-
ing is thought to consist of three components including
the level (Lt), trend (Tt) and seasonality (St) as shown in
Equation 1.

(1)Ŷ t+k = (Lt + KTt)St+k−m

Where M is the number of seasons (for a period deter-
mined by the data a week being equal to seven) and three-
component level (Lt), trend (Tt) and seasonality (St) are cal-
culated as follows:

(2)Lt = α
Yt

St−m
+ (1 − ff)(Lt−1 + Tt−1)

(3)Tt = fi(Lt − Lt−1) + (1 − fi)Tt−1

(4)St = γ
Yt

Lt
+ (1 − fl)(St−M )

In the Equation 2, α, β and γ are smoothing parame-
ters that will take values between zero and one.

HW cumulative and HW multiplicative exponential
smoothing were implemented using the suggested param-
eter values α = 0.04, β = 0, and γ = 0.15 (9).

3.5. Regression Model

To remove explainable patterns including DOW and
seasonal effects, the generalized linear models (GLM) with
the Poisson estimation were applied to the syndromic data
of fever and neurological symptoms.
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(5)
S(d) = [

∑
ici × Ii(d)] + [c8 + c9 × d] + c10

× cos(
2πd

365.25
) + c11 × sin(

2πd

365.25
)

[Σi ci × Ii(d)]: To get the DOW effect where Σi ci values
are one to seven for weekdays and Ii (d) the values zero and
one.

[C8 + C9 × d]: To get a long term effect.
[c10 × cos (2πd/365.25) + c11 × sin (2πd/365.25)]: To

catch the seasonal effect, 365.25 average numbers of days
of the year, C11 and c10 indicate the magnitude and ampli-
tude of the seasonal effect.

Variables in the final model were selected using one of
the stepwise approaches according to their own values i e,
the smallest Akaike information criterion (AIC) (15, 16).

3.6. Moving Average Method

MA statistics, as explained above in details, is applied
for smoothing removing explainable patterns from data
(11).

All of the applied statistical methods to detect and re-
move explainable patterns were computed using the Mi-
crosoft excel Add In software entitled XLSTAT (17). Illustra-
tions were drawn using Stata software version 11. All analy-
ses were conducted using Microsoft excel Add In software
entitled XLSTAT and Stata software version 11.

4. Results

The presence of DOW and temporal trend in the daily
counts of suspected cases of meningitis using the ACF and
PACF values with corresponding portmanteau (Q) statis-
tics which reveals temporal dependency in the meningi-
tis’ daily time series data are shown in Table 1. Accord-
ing to Table 1, higher autocorrelations in lags 1 to 3 and
12 indicate seasonal and yearly patterns in monthly data.
In addition, all of the autocorrelation values in the above
mentioned lags are statistically significant which favour
the temporal dependency in the data. Visual inspection
reveals higher autocorrelations on autocorrelogarms por-
tend DOW effects, seasonal patterns and annual pattern
(Figures 1 and 2).

Mean values and corresponding 95% confidence inter-
vals (CI) for daily reported number of suspected cases of
meningitis according to days of week, workdays and week-
ends are presented in Table 2. After excluding holidays,
comparison between the mean and 95% CI for the workday
(1.49 (1.38 - 1.60) and the corresponding value for the week-
ends (1.14 (0.99 - 1.29) revealed the presence of weekend ef-
fect (Table 2). In other words, numbers of daily reported
suspected cases of meningitis decreased during weekends.

Overall, the trend of daily frequency peaks during the week
on Tuesdays and then decreases toward the weekend. Re-
garding the holiday effects, the current study found that
the average number of suspected cases of meningitis on
holidays (1.09) was lower than those of workdays and week-
ends.

The trend analysis tests with the Mann-Kendall method
are summarized in Tables 3 and 4. Significant positive
trend and seasonal pattern in daily and monthly data se-
ries of suspected cases of meningitis can be observed. All
of tau Kendall values were statistically significant which
presented seasonality and temporal trend in the suspected
cases of meningitis data.

Some evaluation metrics to measure the efficacy of
smoothing methods to remove the explainable patterns
(Tables 3 and 4) are presented. According to Table 3, pre-
processing (smoothing), skewness and kurtosis values for
daily counts of suspected cases of meningitis indicate vi-
olation from normality assumption. However, at the best
results after pre-processing using seasonal multiplicative
HW exponential smoothing, skewness value of 1.21 and kur-
tosis value of 4.35 changed to 0.15 and 4.84, respectively.
Histograms and normal probability plot in columns 2 and
3 of Figures 1 and 2 revealed the violation normality as-
sumption in the daily and monthly counts of suspected
cases of meningitis. However, after pre-processing normal-
ity assumption improved. In addition, after implementing
pre-processing using smoothing methods, there was a de-
cline in the autocorrelation values in lags 7, 30 days in the
daily counts of suspected cases of meningitis and autocor-
relation values at lags 1, 3 and 12 months in the monthly
counts of suspected cases of meningitis compared to the
initial values. Tables 3 and 4 that reported Mann-Kendall
test showed that positive trend and seasonal pattern in
data before pre-processing was significant but after pre-
processing Mann-Kendall test in any method smoothing
was not significant. This report involved explainable pat-
terns after pre-processing. This finding reflected the good
performance of smoothing techniques to eliminate sea-
sonal patterns such as DOW effects, monthly and yearly
patterns. It was found that the HW exponential smoothing
had better performance in removing DOW and monthly ef-
fects (Table 3). The GLM smoothing showed the best perfor-
mance in removing the trend (Table 4). Plots of the daily
counts of suspected cases of meningitis before and after
pre-processing were shown using various smoothing tech-
niques (Figures 1 and 2).

5. Discussion

Generally, examining the daily counts of suspected
cases of meningitis as a pre-diagnostic data source showed
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Table 1. Values of Autocorrelation and Partial Autocorrelation Lag Delays of Daily Meningitis Suspected Cases From 2010 to 2013 and Delays of Monthly Meningitis Suspected
Cases From 2004 to 2013

Data Lag AC Pac Portmanteau
(Q) Statistics

P-Value

Daily

1 0.23 0.23 99.62 < 0.001

7 0.23 0.09 330.21 < 0.001

14 0.21 0.09 511.15 < 0.001

21 0.25 0.1 604.11 < 0.001

28 0.28 0.13 619.57 < 0.001

30 0.25 0.09 683.62 < 0.001

Monthly

1 0.9 0.93 90.58 < 0.001

3 0.66 0.13 206.61 < 0.001

12 0.48 0.12 463.17 < 0.001

Table 2. The Mean and 95% Confidence Interval of Reported Cases of Suspected
Meningitis on Weekdays From 2010 to 2013

Day of Week Number of Days Mean (95% Confidence
Interval)

Saturday 143 1.41 (1.16, 1.66)

Sunday 146 1.4 (1.17, 1.62)

Monday 146 1.55 (1.28, 1.82)

Thursday 147 1.43 (1.21, 1.66)

Wednesday 147 1.66 (1.41, 1.92)

Tuesday 147 1.14 (0.94, 1.3)

Friday 156 1.15 (0.94, 1.36)

Workdays (Saturday to
Wednesday)

729 1.49 (1.38, 1.6)

Weekends (Tuesday and
Friday)

296 1.14 (0.99, 1.29)

Holidays (Fridays and
other holidays)

220 1.14 (0.97, 1.3)

Holidays (except for
Friday)

64 1.09 (0.83, 1.35)

the presence of explainable patterns and there was a great
need to remove such patterns. To better explain the value
of the study findings, first the key findings regarding the
detection of the explainable patters and assessment of nor-
mality assumption were discussed. In the latter part of
the discussion the pre-processing methods implemented
to remove explainable patterns from the raw data were
debated. As noted in the findings, the tools used to de-
tect explainable patterns discovered the presence of sea-
sonal patterns especially DOW and holiday effects in the
daily counts of suspected cases of meningitis. A study with
similar results had been performed on suspected cases of
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Figure 1. Plots to Detect Explainable Patterns and Comparing Pre-Processing Meth-
ods for Daily Cases of Suspected Meningitis, for the Raw Data (Top Row) and After
Pre-Processing Different Methods

measles in Iran (18). Also, similar results were reported in
both sales of throat lozenges and emergency department
visits for gastroenteritis (13). The study by Mathes (19) in
2011 on the Evaluation of chief complaint data reported for
near-real time tracking of communicable diseases to de-
tect outbreaks or other unexpected disease clusters using
emergency department daily visits indicated that DOW ef-
fect, Holiday effect and seasonal trends affected the num-
ber of visits. Furthermore, evidence of DOW effects on the
bio- surveillance and pre-diagnostic data by different stud-
ies (15, 20-23) indicated the necessity of considering the
role of seasonal patterns such as the month and strength-
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Table 3. Comparative Statistics for Daily Cases of Suspected Meningitis, Before and After Preprocessing Different Methods

Index Raw Data Moving Average Holt-Winter Additive Holt-Winter Multiplicative GLM

Window (3) Window (7)

Mean (standard deviation) 1.37 (1.44) 0.00 (1.43) 0.01 (1.34) 0.00 (1.3) - 0.08 (1.53) 1.27 (1.33)

Mean (weekend Standard deviation) 1.37 (1.27) - 0.31 (1.35) - 0.23 (1.27) - 0.17 (1.28) - 0.38 (1.46) 3.61 (0.59)

Skewness 1.21 0.56 0.78 0.18 0.15 1.11

Kurtosis 4.35 4.31 4.3 4.9 4.84 4.53

Autocorrelation values

Lag (7) 0.23 - 0.03 -0.1 - 0.01 0.04 0.11

Lag (30) 0.25 0.06 0.06 0.06 0.02 0.16

Lag (365) N.A N.A N.A N.A N.A N.A

Mann-Kendall Test

Seasonal test

Kendall’s tau 0.22 0.01 - 0.03 - 0.05 - 0.06 - 0.04

P Value < 0.001 0.51 0.9 0.99 0.99 0.46

Trend test

Kendall’s tau 0.22 0.02 - 0.02 0.05 - 0.06 - 0.04

P Value < 0.001 0.43 0.87 0.99 0.99 0.98

Abbreviation: GLM, generalized linear models.

Table 4. Comparison of the Statistics for Monthly Cases of Suspected Meningitis, Before and After pre-processing Different Methods

Index Raw Data Moving Average-Window (2) Holt-Winter Additive Holt-Winter Multiplicative GLM

Mean (standard deviation) 15.31 (22.85) - 0.04 (7.9) 0.41 (9.46) 1.29 (11.1) 0.07 (0.76)

Skewness 1.42 1.51 1.38 2.19 1.59

Kurtosis 3.71 13.76 12.44 12.88 14.83

Autocorrelation values

Lag (1) 0.9 0.39 0.11 0.57 - 0.04

Lag (3) 0.65 - 0.46 - 0.01 -0.24 0.05

Lag (12) 0.48 0.3 0.29 0.26 0.18

Mann-Kendall Test

Seasonal test

Kendall tau 0.68 - 0.06 - 0.01 0.09 - 0.3

P Value < 0.001 0.8 0.54 0.19 1

Trend test

Kendall tau 0.62 - 0.04 0.04 0.08 - 0.34

P Value < 0.001 0.67 0.33 0.37 1

Abbreviation: GLM, generalized linear models.

ened the rationale.

One expected finding of the study was the trend of av-
erage number of suspected cases of meningitis and the in-
consistency found in practice. According to Table 3, the

daily counts of cases in the early part of the working week
(Saturday, Sunday, Monday and Wednesday) were high.
They reached their peak on Wednesday. On the weekend
(Thursday and Friday), the number of reported cases re-
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Figure 2. Plots to Detect Explainable Patterns and Comparing Pre-Processing Meth-
ods for Monthly Cases of Suspected Meningitis, for the Raw Data (Top Row) and After
Pre-Processing Different Methods

duced. One of the surprising findings from the large stan-
dard deviations of the reported cases from 2004 to 2013
was suspected meningitis. There seems to be a main reason
regarding the inconsistency between this finding and ex-
pectations. The national surveillance system for meningi-
tis implemented the routine activities and changes in the
approach of electronically collecting reports that lead to
the increase since 2010.

As is clearly mentioned above, the current study found
that normality assumption for daily counts of suspected
cases of meningitis was not met. This finding reflects the
necessity of assessing normality assumption before ap-
plying outbreak detection algorithms such as cumulative
sum control chart (CuSums) and exponentially weighted
moving average (EWMA) to the pre-diagnostic data. Hence,
those involved should take care when using such algo-
rithms to avoid false alarms. Results of the studies by Lotze
et al. (13), aimed to identify and eliminate explainable pat-
terns of emergency department visits for gastroenteritis
and Karami et al. (18) aimed to detect and remove explain-
able patterns of suspected cases of measles in Iran were
consistent with the current study findings.

Regarding the efficacy of pre-processing techniques,
after implementing smoothing in the daily counts of sus-
pected cases of meningitis, both skewness and kurtosis
changed. The result was consistent with that of a similar
study (13), which implemented pre-processing using data-
driven techniques and also model-based methods. The
current study, similar to the study by Lotze et al. (13)

demonstrated that seasonal multiplicative HW exponen-
tial smoothing technique was more efficient than the sea-
sonal additive one to remove seasonal patterns such as
DOW, holiday and weekends effects. In addition, the role of
the techniques to eliminate temporal dependency in the
daily frequency of suspected cases of meningitis was evi-
dent. There were two similar studies in the literature. One
reported similar results (22), but was vague on the details
of the applied methods. Lotze TH (9) suggested parameter
values α = 0.04, β = 0, and γ = 0.15. As explained in the
methods, HW exponential smoothing technique was im-
plemented to both optimized smoothing parameter val-
ues and suggested parameter values α = 0.04, β = 0, and
γ = 0.15.

Finally, according to the characteristics of the data it
seems that implementing data-based smoothing methods
such as HW exponential smoothing were simpler and bet-
ter than model-based smoothing methods such as regres-
sion Poisson. For optimal performance of the model-based
smoothing method, long time data should be driven. Be-
sides this strength, it seems that applying confounding
variables such as person and place in the pre-processing of
the data should be considered in the future.

Lack of access to daily data of suspected meningococ-
cal disease 2010 years ago, according to the Health Depart-
ment of the portal has been launched in 2010. The limita-
tions of the analysis, especially has been effective on meth-
ods based model.

5.1. Conclusions

Generally, daily counts of suspected cases of meningi-
tis as pre-diagnostic data in the national surveillance sys-
tem in Iran tend to include explainable patterns such as
seasonal pattern, DOW effect, holidays and weekend ef-
fects. According to the prevalence of such patterns, it is
highly recommended to implement pre- processing meth-
ods before applying outbreak detection algorithms in pre-
diagnostic data.
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