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Abstract

Background: Staphylococcus epidermidis as a typical opportunist pathogen is responsible for major nosocomial infections, and has
a substantial impact on human life and health. Studies have shown that its main virulence factor is the ability to form biofilms
on polymeric surfaces to which it adheres and colonize. The biofilms protect microorganisms such as Staphylococcus epidermidis
against the action of antibiotics administered for the treatment of infections and against the patient’s immune system.
Methods: In the current study, 50 isolates of S. epidermidis were characterized and subjected to biofilm detection by the microtiter
plate (MTP), Congo red agar (CRA), and PCR methods. Antibiotic resistance was assessed by the disk diffusion method. The clinical
source of S. epidermidis was as follows: blood (n = 20, 40%), urine (n = 4, 8%), wound (n = 8, 16%), catheter (n = 10, 20%), and pus (n = 8,
16%).
Results: The current study showed that all the isolates were susceptible to nitrofurantoin, vancomycin, and Synercid and all were
resistant to penicillin. Moreover, 68% of the isolates were biofilm-positive by CRA and 76% by MTP methods. Finally, 72% of the
isolates showed icaA genes.
Conclusions: The pathogenic determinants of S. epidermidis are very complex, multifactorial, and dependent on numerous genetic
and environmental factors. Other genes that may contribute to pathogenicity are also involved in biofilm formation in S. epidermidis
that need to be studied in more accurate molecular assays.
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1. Background

Staphylococcus epidermidis normally resides on the skin
and mucous surfaces. It is most often associated with
hospital-acquired infections particularly when implanted
medical devices such as urinary tract catheters are used (1-
5). It is also the most prevalent bacterium recovered from
immunocompromised patients (6, 7). The point that high-
lights the pathogenesis of S. epidermidis infection is its high
resistance to several classes of antibiotics and its ability to
form biofilm (7).

The importance of bacterial biofilms was highlighted
by Arciola et al., who pointed out that the formation of
bacterial biofilm and inherent resistance to antimicro-
bial agents and to the patient’s immune system are the
causes of many persistent and chronic bacterial infec-
tions (8). Bacteria in the biofilm are protected from the
host defense system and antibiotics administered for the

treatment of infections (9, 10). Biofilms usually result in
persistent infections that cannot be easily resolved with
standard antibiotic treatments (10) because the removal
of the foreign body is often necessary for a cure (11, 12).
Thus, the associated infections are difficult to clear, caus-
ing increased morbidity and mortality. Factors involved
in biofilm-associated resistance include limited penetra-
tion, decreased growth rate, cell density, unique cell phys-
iology, persister cells, and altered chemical microenviron-
ment (13).

Biofilm-associated accumulation of bacterial cells that
are enclosed in a self-produced matrix exopolysaccharide
can easily attach to biotic or abiotic surfaces (3, 14-19). This
biofilm structure is made up of extracellular matrix that
comprises polysaccharides, proteins, enzymes, DNA, etc.
(20, 21). Biofilm development depends on many physi-
cal, chemical, and biological factors (20). In staphylococci,
the main intracellular adhesion molecule in staphylococci
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is the polysaccharide intercellular adhesion (PIA). Biofilm
formation is regulated by the expression of PIA, also known
as poly-N-acetylglucosamine (PNAG) (22). PIA participates
in cell-cell adhesion and plays an important role in biofilm
formation by CoNS (10, 23). The PIA is encoded by ica (inter-
cellular adhesion) genes that are organized in an operon
structure. The operon contains the ica ADBC genes (3, 24).
Functional analysis of ica ADBC proteins revealed that pro-
teins icaA, icaD, and icaC are present on the cell membrane.
IcaB is secreted in the culture supernatant. During PIA
synthesis, icaA displays N-acetylglucosaminyltransferase
activity and the co-expression of IcaA and IcaD genes in-
creases the transferase activity. The combination of icaA
and icaD can produce N-acetylglucosamine oligomers in
a maximal length of 20 residues. IcaB, a deacetylase, has
shown sequence similarity to the Rhizobium NodB protein.
IcaC, a transmembrane protein, may facilitate the translo-
cation of the growing polysaccharide to the cell surface (3,
8, 20). In addition, the ica R gene encodes a transcriptional
repressor, which downregulates ica operon expression re-
lated to environmental factors in S. epidermidis (20, 25-27).

The production of biofilm is analyzed both by the phe-
notypic methods, such as the microtiter plate (MTP) assay
devised by Christensen et al. and the Congo red agar (CRA)
plate test as described by Freeman et al., and by the molec-
ular detection of the ica locus (28-31).

2. Objectives

The aim of the present study was to investigate biofilm
production in CoNS strains isolated from clinical and
healthy individuals using qualitative Congo red agar (CRA
test) and quantitative microtiter plate assay (MTP). The
presence of icaA genes was determined by polymerase
chain reaction (PCR).

3. Methods

3.1. Bacterial Isolates and Species Identification

This cross-sectional study was performed in a period
of 12 months from June 2016 to June 2017 at Hashemi Ne-
jad Hospital in Tehran, Iran. In total, 50 isolates of S. epi-
dermidis were collected from inpatients. The samples in-
cluded blood, medical devices, wound, pus, and urine. All
specimens were cultured on blood agar plates, incubated
at 37˚C for 24 hours, and assessed by standard biochemical
and microbiological tests to identify S. epidermidis.

3.2. Antibiotic Susceptibility Testing

For the antibiotic susceptibility testing, isolates were
suspended in nutrient broth and the suspension was ad-
justed to a turbidity equivalent to a 0.5-McFarland stan-
dard, corresponding to 108 CFU/mL. The antibiotic sus-
ceptibility test was performed using the disk diffusion
method. Muller Hinton plates were incubated at 35°C and
read after 18 hours of incubation. The results were inter-
preted according to the Clinical and Laboratory Standards
Institute (CLSI) guidelines. Eleven antibiotic discs were
tested: amikacin (30 µg), kanamycin (15 µg), minocycline
(30µg), vancomycin (30µg), clindamycin (2µg), cotrimox-
azole (25 µg), nitrofurantoin (300 µg), erythromycin (15
µg), Synercid (15 µg), penicillin (10 µg), and rifampin (5
µg).

3.3. Detection of Biofilm Formation

3.3.1. Congo Red Agar (CRA) Method

The Congo red test was performed on brain heart in-
fusion agar (BHI agar, 37 g/L), containing glucose (36 g/100
mL), and Congo red stain (0.8 g/100 mL). The plates were
incubated aerobically for 24 to 48 hours at 37°C. Biofilm
producers formed black colonies on CRA whereas non-
producers formed red colonies. The Congo red dye di-
rectly interacts with certain polysaccharides to form col-
ored complexes.

3.3.2. Microtiter Plate (MTP) Method

This quantitative test described by Christensen et al.
is considered the gold standard method for biofilm detec-
tion. Organisms isolated from fresh agar plates were inoc-
ulated in 10 mL of trypticase soy broth with 1% glucose. Cul-
tures turbidity was adjusted to a 0.5-McFarland standard.
Individual wells of sterile 96-well flat bottom polystyrene
tissue culture plates were treated with 200 µL of the bac-
terial suspension. Negative control wells contained ster-
ile broth. Plates were incubated at 37°C for 24 hours. Af-
ter incubation, the content of each well was removed by
gentle tapping. The wells were washed four times with 0.2
mL of phosphate-buffered saline (pH 7.2). The washing re-
moved free-floating bacteria. The adherent bacteria were
fixed in 2% sodium acetate, dried at 65°C for 1 hour, and
stained with 1% crystal violet for 15 minutes. Excess stain
was removed by gently washing the plates twice with dis-
tilled water. Finally, 100 µL of an alcohol solution contain-
ing 70% ethanol and 10% isopropyl alcohol was added to
each well, and optical density was measured at 570 nm.
All tests were performed in triplicate. Biofilm production
was considered as strongly adherent (optical density of
higher than 0.3), moderate adherent (optical density of 0.2
- 0.3), weakly adherent (optical density of 0.1 - 0.2), and non-
adherent (optical density of lower than 0.1).
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3.3.3. Polymerase Chain Reaction (PCR)

Cellular DNA was acquired from S. epidermidis
colonies grown overnight on blood agar plates by the
High-Pure PCR Template Preparation Kit (Roche Co.,
Germany) according to the manufacturer’s instruc-
tion. Species-specific primers were used for detection
of the icaA gene. The primer sequences for icaA were:
forward (5’-GacCTCgAAgTC AATAgAggT-3’) and reverse (5’-
CCCAgTATAACgTTggATACC-3’). The two primers amplified
an 814-bp region. A total volume of 25 µL PCR reaction
mixture containing 1µL of template DNA, 12.5µL of Master
mix 2X (Amplicon, Denmark), and 2 µL of each primer
was utilized. Reactions were performed in a thermal
gradient cycler (Eppendorf Co., Germany) with the fol-
lowing thermal cycling profile: an initial denaturation at
94°C for 5 minutes, followed by 30 cycles of amplification
(denaturation at 94°C for 1 minute, annealing at 59°C for
1 minute, and extension at 72°C for 1 minute) and a final
extension period of 5 minutes at 72°C. Amplification prod-
ucts were evaluated by electrophoresis on the 1% agarose
gel (Tris-acetate buffer) and visualized by safe stain (Cinna
Gen).

4. Results

4.1. Isolates and Identification of Coagulase-Negative Staphylo-
cocci

In the current study, 50 isolates of S. epidermidis were
collected from various clinical specimens. The distribu-
tion of isolates was as follows: Blood (n = 20, 40%), urine (n
= 4, 8%), pus (n = 8, 16%), catheter (n = 10, 20%), and wound
(n = 8, 16%).

4.2. Congo Red Agar

The phenotypic production of slime by all strains un-
der study was assessed by culture on CRA plates.

Of the 50 clinical samples, 34 (68%) isolates were
biofilm producers. Biofilm-producing bacteria were iso-
lated from blood (22%), medical devices (14%), pus (10%),
urine (8%), and wound (14%).

4.3. Microtiter Plate Method (MTP)

Of the 50 clinical samples, 38 (76%) isolates were pos-
itive for biofilm formation in the MTP test. Biofilm-
producing bacteria were isolated from blood (28%), med-
ical devices (14%), pus (10%), urine (8%), and wound (16%).

4.4. PCR for IcaA Gene

Of the 50 clinical samples, 36 (72%) isolates were posi-
tive for the icaA operon. Biofilm-producing bacteria were
isolated from blood (26%), medical devices (14%), pus (10%),
urine (8%), and wound (14%).

4.5. Correlation Between the Presence of the Ica Operon, Biofilm
Production, and the MTP Results

Comparison between the results of MTP test and the re-
sults obtained by PCR revealed that 68% of the isolates were
concomitant positive. Thee biofilm formation comparison
between the results of MTP test and the results obtained
by CRA revealed that 68% of the isolates were concomitant
positive. Comparison between the results of the CRA test
and the results obtained by PCR revealed that 58% of the
isolates were concomitant positive.

4.6. Antibiotic Susceptibility Testing

Antibiotic susceptibility tests were performed by the
Kirby-Bauer disk diffusion method following the CLSI
guidelines. The international reference strains were used
as controls including S. epidermidis ATCC 29213 and S. epi-
dermidis ATTC25923 as standard positive and negative con-
trol strains, respectively. The results of the study indicated
that all of the isolates were sensitive to nitrofurantoin, van-
comycin, and Synercid. The most resistance was noted to-
ward penicillin. The percentages of resistance to each an-
tibiotic are presented in Table 1 and Figure 1.

Table 1. Resistance Patterns in Biofilm Producers and Non-Biofilm Producers

Antimicrobial
Agents

Biofilms Producers
(%)

Non-Biofilm
Producers (%)

Vancomycin 0 0

Synercid 0 0

Nitrofurantoin 0 0

Penicillin 100 100

Amikacin 30 20

Kanamycin 69 47

Minocycline 10 10

Rifampin 10 6

Clindamycin 50 41

Cotrimoxazole 78 61

Erythromycin 70 54

5. Discussion

Coagulase-negative staphylococci are implicated in
hospital infections and they can infect a wide variety of
prosthetic medical devices. The most important virulence
factor of these bacteria is their ability to stick to hard sur-
faces and form biofilms (32). The ability of staphylococci to
form biofilms helps the bacteria to resist the host immune
response and antimicrobial agents (22).

Arch Clin Infect Dis. 2019; 14(3):e64496. 3

http://archcid.com


Hasanvand H et al.

Antibiotic Sensitivity Pattern 

Biofilm+ 

Biofilm - 

120

100

80

60

40

20

0

30

20

69

47

10 10 10 6

50
41

54

70
61

78

100 100

Am
ik

acin
 

Kanam
ycin

 

M
in

ocychelin
 

Rifa
m

pin
 

Clin
dam

ycin
 

Cotri
m

oxazole

Eryth
ro

m
ycin

 

Penicill
in

 

Figure 1. Antibiotic sensitivity pattern in Staphylococcus epidermidis

It has been noticed in several studies that Staphylococ-
cus epidermidis is the most frequently isolated species in
nosocomial infections and is the most common causative
organism found in infections created by implanted med-
ical devices. It makes up a significant part of the nor-
mal bacterial flora of the human skin and mucous mem-
branes and it is probably introduced easily as a contam-
inant during the surgical implantation of polymeric de-
vices. Our study used three widely used methods for test-
ing biofilm formation capability, including growth on CRA,
MTP method, and PCR-based detection of ica operon.

The results of the current study indicated that all the
isolates were susceptible to vancomycin, nitrofurantoin,
and Synercid. The most resistance was noted toward peni-
cillin. This correlated well with the results obtained by Gor-
don et al. in the USA that reported all isolates were suscep-
tible to vancomycin and 98% of the isolates were resistant
to penicillin (33).

Of the 50 samples (isolates), 34 (68%) were biofilm pro-
ducers in the CRA test. This correlated well with the study
by Mendoza et al. in Mexico that reported biofilm detec-
tion in 62% of the isolates by the CRA method. It was also
in accordance with the study by Mertens and Ghebremed-
hin in Germany that reported biofilm detection in 64% of
the isolates by the CRA method (12, 34). Biofilm-producing
bacteria were most isolated from blood (22%), followed by
medical devices (14%), pus (10%), urine (8%), and wound
(14%).

Using the CRA method, Silva et al. detected biofilm pro-
duction in only 25% of the CoNS strains isolated from clin-
ical specimens of newborns in the NICUs (10). The CRA test

seems to be easier and faster than other methods for mea-
suring biofilms. However, its results are comparable with
the results of the molecular method. The same approach
was used by Fitzpatrick et al. (10, 35).

Of the 50 samples, 38 (76%) were positive in the MTP
test. The results correlated well with those by Oliveira and
Cunha Mde in Brazil that detected biofilm formation in 81%
of the isolates, Hell et al., in the USA that reported biofilm
detection in 63% of the isolates, and Tremblay et al. in
Canada that reported biofilm formation in 85% of the iso-
lates by the MTP method (2, 10, 14).

Biofilm-producing bacteria were most isolated from
blood (28%), followed by medical devices (14%), pus (10%),
urine (8%), and wound (16%). In the study by Mathur et
al. 57.8% of staphylococcal clinical isolates displayed a
biofilm-positive phenotype and 14.47% and 39.4% exhib-
ited high and moderate biofilm formation, respectively
(36); however, in 46% of the isolates, weak or no biofilm for-
mation was detected. In the study by Oliveira et al., among
100 isolates studied, 35 (35%) were classified as weakly ad-
herent and 46 (46%) as strongly adherent (10).

Bose et al. reported that 54.19% of staphylococci were
biofilm producers whereas Mathur et al. reported a rate
of 53.9% (37). The MTP assay is the most useful and most
widely used technique as a standard test for the detection
of biofilm formation (37). This method is the most sensi-
tive and most accurate method and has the advantage of
being a quantitative tool for comparing the adherence of
different strains (10).

In our current study, the PCR method was used to de-
tect the ica operon. Since PCR is a simple technique, it can
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be an important tool for the identification of ica genes.
It is relatively rapid and reliable and requires minimal
amounts of DNA. PCR was used as a reference for the phe-
notypic method based on several studies. In addition, the
ica genes are important virulence markers of clinical CoNS
isolates since their expression is associated with the pro-
duction of PIA, the most clearly characterized component
of staphylococcal biofilms (22). In this study, of the 50 iso-
lates, 36 (72%) were positive for the icaA operon. This was in
accordance with the study by Oliveira and Cunha Mde, who
reported that 82% of the isolates carried the ica operon (10).

Comparing the MTP test results with the PCR assay
results revealed that 68% of the clinical isolates and 38%
of the healthy individuals’ isolates were biofilm-positive.
Comparison between the MTP test and the results obtained
by CRA revealed that 68% of the isolates were positive for
biofilm formation. Comparison between the CRA test and
the results obtained by PCR revealed that 58% of the iso-
lates were positive for biofilm formation. In the present
study, the MTP test showed the best correlation with the
PCR results. Moreover, biofilm-producing strains were
more resistant than non-biofilm producers.

5.1. Conclusions
Intercellular adhesion genes (ica) and consequent

biofilm production were detected in most CoNS isolates.
Therefore, infections caused by biofilm-producing staphy-
lococci could complicate antibiotic therapy. The MTP
method showed the best correlation with the PCR results.
Antibiotic resistance and biofilm forming potential were
more prevalent in clinical isolates. Since the pathogenic
determinants of these bacteria are very complex, multi-
factorial, and dependent on numerous genetic and envi-
ronmental factors, more accurate molecular studies are
needed in this context. Other genes that may contribute
to the infection process are also involved in biofilm forma-
tion in coagulase-negative staphylococci, which need to be
more studied. Additionally, gene regulation rather than
the presence or absence of the ica operon may be involved
in bacterial virulence.
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