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Abstract

Background: Jump analyses are frequently conducted in the sport and rehabilitation sector by different methods. This study aimed
to compare a new ultrasonic system (US) measuring the distance between standing and the highest point of the jump with (a)
the impulse-momentum (FP_IM), double integration (FP_DI), and flight-time (FP_FT) methods using a force plate and (b) the rise-
time (VA_RT) and vertical distance (VA_VD) methods of the ankle using a high-speed video analysis. Additionally, the trial-to-trial
reliability of each method was examined.
Methods: Eighteen participants (25.8 ± 5.9 years) performed three countermovement jumps. The jump height was determined by
the six methods. One-way repeated measures ANOVA with post-hoc comparisons were used to evaluate systematic bias. Pearson cor-
relation coefficients and typical errors between all the methods were calculated to determine random errors. Trial-to-trial reliability
was assessed with intraclass correlation coefficients (ICC).
Results: A systematic bias existed between the US (≤ 15.4 cm) as well as FP_DI (≤ 14.0 cm) and all the other methods (all P < 0.05).
Moreover, the vertical jump heights of FP_FT were 1.7 and 1.4 cm greater than the heights of FP_IM and VA_VD, respectively (all P <
0.05). Correlation coefficients and typical errors between all methods were ≥ 0.91 and ≤ 2.6 cm, respectively. The ICCs for the US,
FP_IM, FP_DI, FP_FT, VA_VD, and VA_RT were 0.96, 0.96, 0.93, 0.95, 0.94, and 0.90, respectively.
Conclusions: All methods showed a high trial-to-trial reliability, confirming their general usefulness. However, the systematic dif-
ferences between the jump heights of the methods need to be considered. Consequently, regression equations allow the conversion
of countermovement jump heights between the six methods with small typical errors of estimate.
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1. Background

In the sport and rehabilitation sector, jump analyses
are frequently conducted (1-3). For this purpose, vertical
jumps, in particular the countermovement jump, are fre-
quently performed (1, 4, 5). To date, different analysis
systems have been developed, which use predominantly
force-time (6), flight-time (7), or video data (8) to determine
the vertical jump height. Since the body posture is more
bent at landing compared to take-off (9-11), flight-time mea-
surements can be influenced by the landing style (6, 12,
13). Contrary, the use of the rise-time of the jumper may
be more accurate, although it is more difficult to measure
(9, 12). The impulse-momentum method, grounding on
force-time data, is considered as the ‘gold standard’ for sta-
tionary vertical jump height measurements (6, 7), even if
it is unclear, whether the vertical impulse is exclusively ef-
ficient for the jump height or it produces an angular im-
pulse along the horizontal axis of the body, too (9). A fur-

ther method uses the double integration of the force-time
data to calculate the vertical displacement of the centre of
mass during a jump (14). Beyond that, all these mentioned
methods are limited due to the difficulty to analyse sport-
specific unilateral or bilateral jumps on different surfaces,
which contain opening steps and altered landing styles as,
for instance, in soccer or handball (1, 7).

To have an alternative method for the measurement
of jump height, a three-dimensional ultrasonic position-
ing system has been recently developed. Thereby, three ul-
trasonic markers were integrated in one wireless sensor,
which can be worn by the jumper and send continuous
pulses (40 kHz) to a receiver after an initial synchronisa-
tion using an integrated infrared emitter. By triangulation,
absolute 3D-coordinates can be calculated from the run-
ning times of these pulses. Therefore, the jump height can
be determined as the vertical distance between standing
and the highest point of the jump. Consequently, the use
of the ultrasonic system may overcome some of the afore-
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mentioned disadvantages to measure jump height accu-
rately in vertical as well as sport-specific jumps.

As the traditional calculation of vertical jump height
using force-time, flight-time, and video data is based on
different methodological approaches, this study aimed to
compare a new ultrasonic system with these methods. In
addition, the trial-to-trial reliability of the different meth-
ods regarding the jump height should be examined. Such
knowledge is important for scientists and practitioners to
appraise possible differences in vertical jump height mea-
surements and to judge their usefulness.

2. Methods

2.1. Participants

Eighteen recreational sport students (sex: 12 males,
6 females; age: 25.8 ± 5.9 years; height: 1.79 ± 0.08 m;
body mass: 76.7 ± 9.6 kg) of the local university were re-
cruited by an independent investigator to participate in
this study. All participants had no illnesses and acute in-
juries, which could have affected their maximum jump-
ing performances. The participants received information
concerning all procedures and potential risks involved in
this study and signed a consent form to participate. The
study complied with international ethical standards and
approved by the Ethics Committee of the local university.

2.2. Procedures

After up to 5 familiarization trials, all participants per-
formed three vertical countermovement jumps during
which their arms were free to move to achieve maximal
jump heights (15). The participants stood still before jump-
ing and resumed this reference position again afterward. A
recovery period of 30 seconds was adhered between each
trial. Each jump was analysed with the use of an ultra-
sonic system (Nexonar, soft2tec GmbH, Rüsselsheim, Ger-
many; Figure 1), a force plate (9287BA, Kistler Instruments
AG, Winterthur, Switzerland), and a high-speed video cam-
era (piA640-210g, Basler AG, Ahrensburg, Germany). Then,
six different jump heights were determined by the three
systems using different methodological approaches, as de-
scribed in the following.

2.3. Ultrasonic Based System (US)

A wireless ultrasonic sensor (Nexonar miniTriplet Bea-
con; weight 44 g) was worn in a custom-made neoprene
harness located between both scapulae. The ultrasonic re-
ceiver was stationary placed in the back of the participants
2.5 m above the ground with an inclination of 45°. The cali-
bration procedure was performed according to the man-
ufacture’s instruction, which enabled a resolution of 0.1

mm. The jump height was defined as the difference be-
tween the highest point during jumping and the mean
height of a two-second window during standing, because
these time points can be accurately defined from the coor-
dinates of the sensor with a sampling rate of 50 Hz.

2.4. Force Plate Analysis (FP)

The ground reaction forces were captured at 1,000
Hz with a customized software (LabVIEW 2010, National
Instruments, Austin, TX, USA). Figure 2 shows the per-
formed calculation of the jump height using the impulse-
momentum (FP_IM), the double integration of the force-
time data (FP_DI), and the flight-time (FP_FT) method ap-
plying a vertical force threshold of 10 N (6, 14). FP_IM calcu-
lates the jump height from the area between the force-time
curve and body weight until the take-off (Equation 1). FP_DI
computes the maximum vertical displacement of the cen-
tre of mass during the jump (Equation 2). The formula of
the jump height used by FP_FT is given in Equation 3.

(1)h =
1

2×m2 × g
×
(∫ t1

t0

(F −m× g) dt

)2

Where h is the jump height, F is the vertical ground re-
action force, m is the body mass, g is the acceleration due
to gravity, and t is the time.

(2)h = max

∫ ∫
f

m
− gdt

Where h is the jump height, F is the vertical ground re-
action force, m is the body mass, g is the acceleration due
to gravity, and t is the time.

(3)h =
1

8
× g × tFlight

2

Where h is the jump height, g is the acceleration due to
gravity, and t is the flight-time.

2.5. Video analysis (VA)

A high-speed video camera was placed 6 m at the left-
hand side of the force plate. The video data were cap-
tured at 200 Hz with a resolution of 646 × 486 px. To
cope with the low resolution and receive detailed infor-
mation of the foot position during the jump, a 1.1 × 0.8
m sagittal plane window of the participant’s left leg was
targeted. Two investigators independently performed the
calibration procedure using a free software tool (Kinovea
0.8.15, www.kinovea.org), ensuing a typical error of < 0.3
cm. The jump height was calculated from the rise-time us-
ing Equation 4 (VA_RT) as well as measured as vertical dis-
tance (VA_VD) between the take-off and the highest point
during the jump. Therefore, a marker was placed at the left
lateral malleolus.
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Figure 1. The Wireless Sensor (Left Side; 69 × 23 × 54 mm) and Receiver (Right Side; Size 260 × 250 × 50 mm) of the Ultrasonic System.
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Figure 2. Vertical Force-, Velocity- and Position-Time Data Assessed with the Force Plate (Solid Lines) as well as Vertical Position Measured by the Ultrasonic System (Dotted
Line).

(4)h =
1

2
× g × tRise

Where h is the jump height, g is the acceleration due to
gravity, and t is the rise-time.

2.6. Statistical Analyses

All jumps were considered as single cases. The differ-
ences between the six methods were expressed as mean
± SD and 95% confidence intervals. To estimate poten-
tial systematic bias, one-way repeated measures analysis of
variance (ANOVA) was employed with post-hoc tests using
Bonferroni correction. Possible random errors between
the methods were evaluated by Pearson correlation coeffi-
cients (r), which were interpreted according to the follow-
ing scale of magnitudes: trivial (< 0.1), small (0.1 to 0.3),
moderate (0.3 to 0.5), large (0.5 to 0.7), very large (0.7 to

0.9), and extremely large (> 0.9) (16). Additionally, the typ-
ical errors were calculated as the standard deviation of the
differences between two methods divided by the square
root of the two methods (17). To determine the trial-to-trial
reliability, the intra-class correlation coefficients (ICC 3,1)
were calculated. Moreover, linear regression analyses were
computed to permit the conversion of the jump height be-
tween the six methods. Finally, the typical errors of esti-
mate (TEE) were determined to quantify the distribution of
the residuals from the best-fit line. The TEE was reported as
standardized score classified as trivial (< 0.2), small (0.2 to
<0.6), moderate (0.6 to < 1.2), large (1.2 to < 2.0), and very
large (≥ 2.0) (18). The SPSS 22.0 software (IBM, Armonk,
USA) was used for all statistical calculations. The level of
significance was set at P < 0.05.
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3. Results

In total, 49 jumps could be analysed by all six methods
because of data failure (3 videos and 2 US data) (Table 1). The
ANOVA revealed a main effect for the six methods (Wilks’
Lambda = 0.01, F(5, 44) = 847, P < 0.001). The post-hoc tests
showed a systematic bias between the US as well as FP_DI
and all other methods, and between FP_FT and FP_IM as
well as VA_VD (all P < 0.05).

The linear relationships were extremely large for all
comparisons (r ≥ 0.91) and all typical errors were ≤ 2.63
cm (Table 1). The ICC’s of the jump heights for the US, FP_-
IM, FP_DI, FP_FT, VA_VD, and VA_RT were 0.96, 0.96, 0.93,
0.95, 0.94, and 0.90, respectively. The magnitudes of the
standardized TEE values of all linear regression equations
were small (≤ 0.42) (Table 2).

4. Discussion

This study aimed to compare different approaches to
determine vertical jump height: a new ultrasonic system
(US), impulse-momentum (IM), double integration (DI),
and flight-time (FT) method using a force plate (FP), and
rise-time (RT) and vertical distance (VD) method using a
high-speed video analysis (VA). In addition, the trial-to-
trial reliability of the methods was examined. The main
findings were as follows: 1) the use of FP_FT, FP_DI, and
US resulted in systematically greater jump heights com-
pared to the other methods, even though low random er-
rors existed between all systems, and 2) all the six methods
showed a high trial-to-trial reliability.

As the first main finding, there was a systematic bias
between US (≤ 15.4 cm) as well as FP_DI (≤ 14.0 cm) and all
other methods. Moreover, the vertical jump heights of FP_-
FT were 1.7 and 1.4 cm greater than the heights of FP_IM and
VA_VD, respectively. A systematic bias of 11.2 cm has been
recently reported between the jump-and-reach height and
the FT method (19), which is in accordance with our dif-
ference between the FP_FT and the US (13.7 cm) as well as
FP_DI (12.3 cm). Attia et al. (14) revealed also a systemati-
cally greater jump height of 14.5 cm calculated with the DI
compared to the FT method. The observed systematic bias
may be due to the different methodological definitions of
the jump height. In the FP_IM, FP_FT, and VA methods, the
flight phases began at the take-off, where the feet were in a
plantar flexed position. In contrast, the jump height in the
US and FT_DI methods was defined as the vertical distance
between the highest point during the jump and standing.
Two studies have revealed the displacement of the centre
of mass prior to take-off of 11.9 ± 2.1 and 14.4 ± 0.7 cm, re-
spectively (20, 21). Using the vertical displacement of the

left lateral malleolus between the standing and take-off po-
sitions in the calibrated videos, the authors have quanti-
fied a distance of 10.8 ± 1.0 cm (95% CI 10.6 to 11.1). How-
ever, the revealed distance could not completely explain
the observed systematic bias of the US and FP_DI meth-
ods. A further reason for the differences of the US method
could be the extension of the body during the jump (6, 9).
The use of the US method may be therefore beneficial in
such cases, where the absolute vertical position of an ath-
lete is of interest. In contrast to the other methods, the
FP_FT method can be influenced by the landing position.
In this context, the differences of the ankle and knee an-
gles between the take-off and landing position have to be
considered particularly (9). In this study, the mean differ-
ence of the vertical displacement of the left lateral malle-
olus between the take-off and landing positions was 1.5 ±
1.8 cm (95% CI 1.0 to 2.0), which may partly explain the sys-
tematic bias of the FP_FT method. As shown by Musayev
(12), the use of the rise-time method may eliminate this er-
ror. However, this study revealed a non-significant differ-
ence of 1.3 cm between FP_FT and VA_RT. In summary, prac-
titioners and scientists should be cautioned when compar-
ing the jump heights with different methods or with nor-
mative published data. However, despite high systematic
bias in part, extremely large correlations (r ≥ 0.91) were
found between all the six methods. The presented regres-
sion equations allow the conversion of countermovement
jump heights between the six methods with small typical
errors of estimate.

The second important finding was that all the six meth-
ods showed a high trial-to-trial reliability (ICC ≥ 0.90).
The ICC-value for the FP_FT method (0.95) is comparable
to those reported for the flight-time method using a force
plate (0.96) (22), a high-speed video (0.98) (13), and the Op-
tojump system (0.99) (23). In addition, the ICC-value for the
FP_IM method (0.96) was similar as reported previously in
countermovement jumps for this method (0.90 to 0.96)
(24). Moreover, all the six methods demonstrated similar
ICC-values (≥ 0.90) compared to vertical jump heights de-
termined by the Keimove (0.93) (13), Vertec (0.91) (25), Just
Jump (0.92) (25), and Myotest (0.93) (25) system. Thus, all
applied methods are reliable and useful to measure the ver-
tical jump height of a countermovement jump. Moreover,
the VA of one foot seems to be a cost-efficient alternative
method to measure the jump height. However, it has to
be considered that during landing, the sampling rate of
200 Hz could result in an error between 1.1 and 1.6 cm from
frame to frame (9). The sampling rate of the US method
(50 Hz) appears sufficient to detect the highest point of
the jump, when the vertical velocity becomes zero. In ad-
dition, it is important to note that the use of the VA is time-
consuming and thus, limiting its practical application. It
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Table 1. Jump Height Data (mean ± SD) of the Six Methods as well as Their Differences (mean ± SD, 95% Confidence Interval), Typical Errors (TE), and Pearson Correlation
Coefficients (r)

Force Plate (FP) Video Analysis (VA) Ultrasonic Based
System (US)

Impulse-
Momentum
Method (IM)

Double
Integration
Method (DI)

Flight-Time
Method (FT)

Vertical Distance
(VD)

Rise-Time Method
(RT)

Jump
height

31.9 ± 7.7 cm 45.9 ± 8.6 cm 33.6 ± 8.0 cm 32.2 ± 8.2 cm 32.3 ± 8.8 cm 47.3 ± 8.8 cm

TE
and r

FP_IM 14.0 ± 2.1a (13.4 to
14.6)

1.7 ± 1.7a (1.2 to 2.2) 0.3 ± 2.2 (-0.4 to
0.9)

0.4 ± 3.1 (-0.5 to 1.3) 15.4 ± 2.2a (14.8 to
16.0)

Differences

FP_DI TE = 1.48 r =
0.97

-12.3 ± 2.7a (-13.1 to
-11.5)

-13.7 ± 3.0a (-14.6 to
-12.8)

-13.6 ± 3.7a (-14.6 to
-12.5)

1.4 ± 2.9 a (0.6 to
2.3)

FP_FT TE = 1.23 r =
0.98

TE = 1.91 r = 0.95 -1.4 ± 1.9a (-2.0 to
-0.9)

-1.3 ± 3.0 (-2.1 to
-0.4)

13.7 ± 2.1a (13.1 to
14.3)

VA_VD TE = 1.56 r =
0.96

TE = 2.15 r = 0.94 TE = 1.34 r = 0.97 0.1 ± 3.2 (-0.8 to 1.1) 15.2 ± 2.3a (14.5 to
15.8)

VA_RT TE = 2.19 r =
0.94

TE = 2.63 r = 0.91 TE = 2.11 r = 0.94 TE = 2.23 r = 0.93 15.0 ± 3.3a (14.1 to
16.0)

US TE = 1.58 r =
0.97

TE = 2.04 r = 0.94 TE = 1.51 r = 0.97 TE = 1.64 r = 0.97 TE = 2.35 r = 0.93

aSignificant post-hoc test of the ANOVA (P < 0.05).

Table 2. Linear Regression Equations Typical Errors of Estimate (TEE) for All Comparisons

Criterion Variable (y)

Force Plate (FP) Video Analysis (va) Ultrasonic Based
System (US)

Impulse-
Momentum
Method (IM)

Double
Integration
Method (DI)

Flight-Time
Method (FT)

Vertical Distance
(VD)

Rise-Time Method
(RT)

Predictor
variable
(x)

FP_IM y = 1.089 * x + 11.15
TEE = 0.23

y = 1.011 * x + 1.34
TEE = 0.22

y = 1.022 * x - 0.45
TEE = 0.27

y = 1.074 * x - 1.96
TEE = 0.35

y = 1.109 * x + 11.92
TEE = 0.24

FP_DI y = 0.870 * x - 8.03
TEE = 0.23

y = 0.879 * x - 6.76
TEE = 0.32

y = 0.888 * x - 8.56
TEE = 0.36

y = 0.930 * x - 10.39
TEE = 0.42

y = 0.964 * x + 3.07
TEE = 0.33

FP_FT y = 0.942 * x + 0.25
TEE = 0.22

y = 1.026 * x + 11.44
TEE = 0.32

y = 0.997 * x - 1.32
TEE = 0.23

y = 1.041 * x - 2.65
TEE = 0.34

y = 1.071 * x + 11.33
TEE = 0.24

VA_VD y = 0.907 * x + 2.72
TEE = 0.27

y = 0.986 * x + 14.19
TEE = 0.36

y = 0.949 * x + 3.06
TEE = 0.23

y = 1.007 * x - 0.08
TEE = 0.36

y = 1.038 * x + 13.93
TEE = 0.26

VA_RT y = 0.819 * x + 5.44
TEE = 0.35

y = 0.888 * x + 17.20
TEE = 0.42

y = 0.851 * x + 6.08
TEE = 0.34

y = 0.865 * x + 4.21
TEE = 0.36

y = 0.926 * x + 17.41
TEE = 0.38

US y = 0.852 * x - 8.38
TEE = 0.24

y = 0.926 * x + 2.08
TEE = 0.33

y = 0.882 * x - 8.14
TEE = 0.24

y = 0.897 * x - 10.30
TEE = 0.26

y = 0.931 * x - 11.76
TEE = 0.38

is worth mentioning that the relationships between the
jump heights of traditional vertical jumps and the heights
of sport-specific jumps are insignificant (1, 26) and most
of the existing systems and/or methods are unsuitable to
analyse sport-specific jumps (1, 7). The US may potentially
be an interesting alternative to measure the jump height
in sport-specific jumps for which further studies are war-
ranted. Then, unilateral or bilateral jumps on different sur-
faces are analysable, which contain opening steps and al-

tered landing styles as they typically occur in soccer, bas-
ketball, volleyball, and handball.

The results of this study are limited to the bilateral
countermovement jumps. However, the revealed differ-
ences between the six methods may be generalizable to the
bilateral squat jumps, where only the countermovement
is absent. Furthermore, the test-retest reliability of the US
method may also of interest for the readers. However, the
primary aim of this study was to evaluate the six methods

Asian J Sports Med. 2017; 8(4):e12921. 5

http://asjsm.com


Baumgart C et al.

from a technical perspective and therefore, we believe that
this can be done more accurate via the trail-to-trail relia-
bility than the test-retest reliability, which includes clearly
more biological confounders. As the US method partic-
ularly enables sport-specific jump height measurement,
the authors recommend this evaluation during such jump
tests in the future.

In conclusion, all methods showed a high trial-to-trial
reliability, confirming their general usefulness. However,
the systematic differences between the jump heights of the
applied methods have to be considered. Consequently, re-
gression equations allow the conversion of countermove-
ment jump heights between the six methods.

Footnote
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