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Abstract 
Vitamin D deficiency is a worldwide epidemic, with well known impacts on 
calcium metabolism and bone health, but increasingly recognized 
associations with chronic health problems such as bowel and colonic 
cancer, arthritis, diabetes and cardiovascular disease. In recent years in 
the Sports Medicine literature, there has been an increased focus on the 
potential impact that inadequate Vitamin D levels may have on athletic 
performance.  
     In the early 20th Century, athletes and coaches felt that ultraviolet rays 
had a positive impact on athletic performance, and while remaining 
limited, evidence is accumulating to support this view. Muscle structure 
and function is recognised to play a key role in athletic performance, and 
both cross-sectional and longitudinal studies allude to a functional role for 
Vitamin D in muscle. The identification of the Vitamin D receptor in 
muscle tissue provides a direct pathway for Vitamin D to impact upon 
Skeletal Muscle structure and function. This review focuses on the current 
understanding of the action of Vitamin D within skeletal muscle tissue, and 
the potential impact on performance.  
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INTRODUCTION 

t is well recognized that athletic performance is 
determined by multiple factors, including both 

genetic and environmental influences [1]. While genetic 
pre-determinants of performance are being heavily 
researched, there remain many unanswered questions. 
Similarly, environmental factors, while well recognized 
as having the potential to impact upon athletic ability, 
have only a limited scientific basis. In recent years, 
Vitamin D has been proposed as a potentially 
performance limiting factor when in deficiency, and as 
performance enhancing when present in abundance [2]. 
Vitamin D deficiency is increasingly recognized as a 
worldwide epidemic [3-9] and while remaining contro-
versial, it is generally accepted that levels of 20-30 

ng/ml 25 OH-Vitamin D represent insufficiency, while 
levels below 20 and 10 ng/ml represent deficiency and 
severe deficiency, respectively [10].  
     The most well documented cause of Vitamin D 
deficiency is inadequate sunlight exposure, and as 
such, high latitude countries are known to have a high 
incidence of deficiency [7]. Paradoxically, despite its 
high sunlight hours, Vitamin D deficiency is well 
recognised in Middle Eastern women [11-13], and more 
recently in inner city young adults in America [5], 
athletes and dancers in Israel [14], elite gymnasts in 
Australia [15], young Hawaiian surfers [3], and 
adolescent girls in England [16]. Given the incidence of 
Vitamin D deficiency in athletes and non-athletes alike, 
from all regions of the world, the suggestion that 
Vitamin D deficiency  may  impact  upon  performance 
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has potentially widespread ramifications for athletes.  
     Vitamin D deficiency may have significant long 
term health impacts [17-18] including recognized 
associations with bowel and colonic cancer, arthritis, 
diabetes and cardiovascular disease [10,17-26]. It is also 
possible that a deficiency will result in more immediate 
effects on musculoskeletal health, with increased risk 
of injuries such as stress fractures [20,27,28]; whether 
Vitamin D deficiency will affect injury risk and 
function of other tissues such as muscle, ligament and 
tendon remains unknown. Potentially, Vitamin D 
deficiency may impact upon training quality, injury 
and illness frequency and duration [29] and as a result, 
athletic performance. In the early part of the 20th 
Century, ultraviolet-B (UVB) rays were supposedly 
being used as an ergogenic aid [2,30] and research over 
that period suggested that both cardiovascular fitness 
and muscular endurance were enhanced with increased 
exposure to ultraviolet radiation [31]. However, there 
remains little direct evidence for this [32] and these 
findings are yet to be reproduced. El-Hajj et al [33] 
reported a one year prospective double blind, placebo 
controlled trial of low and high dose Vitamin D3 in 
179 adolescent Lebanese girls. In Vitamin D 
supplemented individuals they found increased lean 
mass, bone area and bone mass, particularly in pre-
menarchal girls, but found no increase in grip strength. 
Furthermore, there were no significant findings 
regarding Vitamin D and muscle mass or grip strength 
in a similar cohort of male adolescents [33]. By contrast, 
a recent study of 99 post-menarchal adolescent girls in 
England, found a positive relationship between serum 
Vitamin D level and jump height, jump velocity and 
power [16]. 
     While Vitamin D deficiency has long been 
associated with muscle weakness [34-37], until recently 
no specific aetiological mechanism had been described. 
Over the last 30 years a mechanism by which Vitamin 
D may affect muscle function has slowly been 
unraveled. Subsequently, while limited, there is 
evidence from a range of sources relating Vitamin D 
deficiency to suboptimal muscle function. This review 
will focus on the current available evidence for the 
manner in which Vitamin D may affect skeletal 
muscle, and thereby potentially impair athletic 
performance.  

Vitamin D:  
Muscle Structure and Function 

Myopathy associated with Vitamin D deficient 
osteomalacia has been recognised for many years, 
typically presenting as a proximal muscle weakness [34-

37]. Until recently, this myopathic presentation was felt 
to be secondary to disuse, rather than a direct effect of 
Vitamin D on muscle. However, increased 
understanding of the Vitamin D metabolic pathways 
suggests that this presumption may be incorrect [38]. By 
1974 electromyographic changes had been observed in 
patients with muscle weakness associated with 
osteomalacia [37], which improved with Vitamin D 
supplementation [36]. The reversibility of the osteo-
malacic myopathy with Vitamin D correction is now 
well recognized [35,39-42]. In a preliminary study Glerup 
et al [38] examined a small group (n=8) of elderly men 
and women (mean age 63.1 ± 5.3 years) with known 
osteomalacia, who had muscle strength assessed using 
an isokinetic dynamometer before and after 3 months 
of treatment with alfacalcidol, ergocalciferol and 
calcium. They found that over three months, muscle 
power increased significantly in all muscle groups 
assessed, with a mean improvement of 24.8 ± 8.0%. 
They then compared a group of Vitamin D deficient 
Arab women with a control group of Danish women 
who had normal levels of Vitamin D. At baseline, 
quadriceps maximum voluntary contraction (MVC), as 
well as electrically stimulated twitch [Single twitch, 
Maximum Production Rate (MPR) and Maximal 
Relaxation Rate (MRR)] were all significantly lower in 
the group of Arab women. Three months of Vitamin D 
supplementation, without strength training, increased 
Vitamin D levels and normalized parathyroid hormone 
(PTH) levels in the Arab women, with a corresponding 
trend towards normalization of the MVC, MPR and 
MRR. Further analysis revealed that only 25-OH 
Vitamin D was significantly associated with Maximum 
Voluntary Contraction and as a result, the authors 
concluded that normal levels of 25-OH Vitamin D are 
necessary for maintaining adequate muscle function.  
 Both biopsy studies [36,37], and case reports of muscle 
weakness associated with osteomalacia [35,39], have 
revealed either non-specific changes or a type II 
skeletal muscle fibre atrophy. Sato et al [43] assessed the 
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impact of Vitamin D supplementation on muscle 
histopathology when they biopsied the non-hemiplegic 
vastus lateralis of 85 Vitamin D deficient elderly stroke 
patients, before and after a two year supplementation 
period with either placebo or Vitamin D2. At baseline 
they found a normal range of type I fibres, but a 
reduced proportion and diameter of type II muscle 
fibres. At the two year follow-up, the placebo group 
had a further reduction in Type II muscle fibre 
diameter, while in the Vitamin D2 supplemented group 
the relative content and mean diameter of type II fibres 
increased. Muscle fibre size was found to correlate 
with 25-OH Vitamin D levels [43].  

Vitamin D, Aging and Muscle Function 

While it is well recognized that muscle strength 
declines with age, this is believed to be due to a 
number of contributing factors [44] and the role of 
Vitamin D continues to be debated [45,46]. Cross-
sectional studies [47-51] appear to show a relationship 
between Vitamin D levels and various measures of 
changes in muscle strength and function with ageing 
[47-51]. By contrast, a review of randomized controlled 
trials investigating Vitamin D and/or calcium 
supplementation, concluded that there was no evidence 
that Vitamin D alone improved the strength or physical 
function of elderly people [45]. Paradoxically, recent 
well controlled and designed studies suggest Vitamin D 
may have a role in moderating the age related decline 
in muscle function [52-54]. Visser et al [52] prospectively 
investigated the impact of low 25-OH Vitamin D and 
high serum PTH in 1008 men and women aged over 65 
years (mean 74 years) and found that individuals with a 
lower 25-OH Vitamin D and / or higher PTH levels 
were significantly more likely to lose grip strength and 
muscle mass and that 30 ng/ml may be a threshold for 
optimal muscle function. Similarly, Bischoff et al [53] 
performed a 12 week double blind, randomized 
controlled trial utilising Vitamin D and calcium versus 
calcium supplementation alone. Knee flexor and 
extensor strength, grip strength and functional (timed 

up and go) testing, all improved in their elderly group 
following supplementation with Vitamin D and 
calcium, versus calcium supplementation alone. 
Gerdhem et al [54], in a three year study of 986 Swedish 
75 year old women, found that reduced Vitamin D 
levels correlated with reduced gait speed, reduced knee 
flexor and extensor strength and increased risk of falls. 
Several other prospective studies have reported similar 
results [43,55-57] but by contrast, in a large prospective 
randomized controlled trial, Latham et al [58] assessed 
the relative benefits of home resistance exercise or a 
single high dose of Vitamin D, on self reported 
physical health, risk of falls and functional 
performance. Despite increasing the serum Vitamin D 
level in those individuals treated, they found no 
significant impact of Vitamin D on any of the self 
reported functional outcome parameters [58]. Finally, 
Vitamin D Receptor (VDR) expression was assessed in 
female hip and spinal operative patients, and was found 
to decrease with age, and that expression was 
unaffected by either 25-OH or 1,25-OH Vitamin D 
levels. Hence, any age related decline in muscle 
strength may be related to reduced Vitamin D receptor 
expression [59] or VDR polymorphisms resulting in 
variable susceptibility to age related changes [60].  

The Vitamin D Receptor 

VDR was first recognised within muscle cells in 
cultured rat myoblast cells in 1985, confirming muscle 
as a target organ for Vitamin D [61]. The VDR has 
subsequently been described in tissues such as smooth 
and heart muscle, liver, lung, colon, gonads and skin 
[62,63] and was isolated from human skeletal muscle in 
2001 [59,64]. It is now recognized that in combination 
with co-factors “retinoid x receptor” (RXR) and 
“Steroid Receptor Coactivator 3” (SRC), the VDR: 
1,25-OH Vitamin D complex modulates gene 
expression of a broad range of proteins [65,66]. This 
includes proteins with roles in calcium metabolism 
such as calbindin [67], but also proteins not directly 
related to calcium metabolism such as Insulin-like 
Growth Factor Binding Protein 3 (IGFBP-3) [65]. The 
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VDR has also been shown to have various genetic 
polymorphisms, which may affect their function within 
skeletal muscle [68-70]. To assess the importance of the 
VDR in the skeletal muscle of mice, a generation of 
VDR gene deleted mice and myoblast cell lines were 
examined [71]. VDR null mice had fibre sizes in the 
quadriceps and other muscle groups 20% smaller than 
VDR replete mice. In addition, VDR null mice 
exhibited increased expression of myogenic 
transcription factors myf5, E2A and myogenin 
compared to normal mice along with inappropriate 
expression of embryonic and neonatal type myosin 
heavy chain (MHC) [71], supporting a direct role for 
1,25-OH Vitamin D and the VDR in both the metabolic 
processes and transcription regulation of skeletal 
muscle.  
     With calcium being a critical modulator of skeletal 
muscle function, any perturbation to calcium handling 
may impact on a muscle’s contractile properties [72]. 
Therefore, Vitamin D may affect muscle function 
through both calcium related protein transcription, and 
total body calcium levels. However, Vitamin D also 
has a transcription enhancing role on proteins other 
than those involved directly with calcium metabolism. 
One such protein, relevant to the discussion of skeletal 
muscle, is IGFBP-3. It is recognised that IGFBP-3 
expression is regulated by a number of factors, 

including Vitamin D [65], with a VDRE in the promoter 
region for human IGFBP-3 recently identified [65]. IGF 
Binding Protein-3 (IGFBP-3) is a member of the 
IGFBP family, which bind IGF-1 in the serum, the 
extracellular matrix and on cell surfaces [73] with high 
affinity and specificity [65,74]. The binding of IGF-1 to 
IGFBP’s may have both inhibitory and stimulatory 
effects on IGF-1 function [66,74,75] and as IGF-1 induces 
proliferation, differentiation and hypertrophy of 
skeletal muscle [76] and is a key component in muscle 
regeneration [75], Vitamin D may have a key role to 
play via IGFBP-3. As a result, IGF-1 is recognized as 
both a potential means for addressing age related 
sarcopenia [77] and as an illegal ergogenic aid in sport 
[78]. In a recent investigation of children with Vitamin 
D deficient Rickets, the significance of IGF-1 and 
Vitamin D was recently highlighted [79]. The authors 
found that growth rates and height of the children 
increased with Vitamin D supplementation, with a 
significant correlation between serum concentrations of 
IGF-1 and the percentage increment in 25-OH Vitamin 
D concentrations. The authors concluded that the 
growth spurt observed in children with rickets after 
Vitamin D supplementation is mediated via through an 
increase in IGF-1 [79]. Hence, the regulation of IGFBP-
3 and subsequently IGF-1 has the potential to impact 
upon muscle structure and function directly (Fig. 1). 

 
Fig. 1: Potential action of Vitamin D on cells  

    VDR: Vitamin D Receptor 
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     In addition to the above-mentioned action, a 
genome independent pathway of Vitamin D action has 
recently been characterized [80,81] whereby 1,25-OH 
Vitamin D is involved in the rapid regulation of 
membrane calcium channels in skeletal muscle cells 
[82]. A membrane receptor with a higher molecular 
weight than the intra-nuclear Vitamin D receptor 
(known as the membrane-associated rapid response 
steroid binding protein (MARRS) [67]), specific for 
1,25-OH Vitamin D has been identified in animal cells 
[83]. While the exact mechanism of the non-genomic 
action of Vitamin D remains controversial, it is widely 
accepted that Vitamin D levels have a rapid effect on 
the membrane calcium channels of muscle cells in 
numerous species [67,81,84]. As calcium is a critical 
modulator of skeletal muscle function [72], it follows 
that Vitamin D levels may have a significant impact on 
muscle function, performance and potentially injury 
risk.  

VDR Polymporphisms and Performance 

Located on Chromosome 12 (12q13.11) [85], the VDR 
is known to have various genetic polymorphisms 
including Bsm1, Fok1, Apal, Taq1, which have been 
associated with various functional outcomes [60,69,70,86]. 
The Fok1 polymorphism involves a T to C transition in 
exon 2 of the VDR gene, resulting in a shorter (424) 
amino acid VDR than the T allele (427) [87], and has 
been associated with variations in both bone mineral 
density [88], differential responses of bone density to 
strength training [89,90], fat-free mass and risk of age 
related sarcopenia [60]. In patients suffering from 
chronic obstructive pulmonary disease (COPD), Fok1 
C homozygotes (also known as FF) were found to have 
significantly weaker quadriceps than either CT 
heterozygotes or T (ff) homozygotes [70]. In a cross 
sectional study, 501 healthy women over the age of 70, 
were assessed for quadriceps and grip strength [69], and 
the VDR genotype Bsm1 (a single nucleotide 
polymorphism found in intron 8 [87]). The bb genotype 
was found to be significantly stronger than the BB or 
heterozygotes genotype. This finding was reproduced 

in a study involving patients with COPD, whereby the 
bb polymorphism was again associated with stronger 
quadriceps muscles [70]. By contrast, Grundberg [68] 
evaluated the relationship between Bsm1 poly-
morphisms and muscle strength utilizing 170 pre-
menopausal Swedish women and found women 
homozygous for Bsm1 BB or poly-A repeats to have 
higher hamstring strength than the bb or LL genotypes. 
Furthermore, no significant associations were found 
between VDR polymorphisms and either grip strength 
or quadriceps strength. Bahat et al [86] found the same 
trend in elderly men.  

CONCLUSION 

Vitamin D deficiency is increasingly recognised in 
modern youth and is now endemic in many 
communities, with athletes not being spared. Three 
independent lines of evidence, namely Vitamin D and 
muscle morphology, age related changes in muscle 
function, and the presence of the VDR in muscle cells, 
support the proposition that Vitamin D may play a 
significant role in muscle structure and function. 
However, athletic performance at all levels is multi-
factorial, and to date there is limited evidence to 
support the proposition that Vitamin D deficiency is 
performance limiting, or that maintenance of Vitamin 
D at supra-physiological levels will result in enhanced 
muscle development and performance. 

CLINICAL RECOMMENDATIONS 

• Athletes should have their (25-Hydroxy) Vitamin D 
levels measured regularly throughout the year. 

• Vitamin D deficient or depleted Athletes should be 
advised on appropriate UVB exposure or 
supplemented as required. 

• Optimal levels of Vitamin D remain controversial, 
but levels of 25-Hydroxy Vitamin D of 30ng/ml 
may be considered safe. 
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