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Abstract

Context: Pregnancy represents a unique physiological state characterized by profound immunological changes that facilitate

the interaction between the maternal and fetal immune systems.

Evidence Acquisition: Key components of the immune system, including natural killer (NK) cells, macrophages (Mφ),

regulatory T cells (Tregs), and cytokines, are crucial for maintaining maternal immune tolerance against the fetus.

Results: Decidual natural killer (dNK) cells are the most prevalent uterine natural killer cells (uNK), and their increase in early

pregnancy indicates their direct relationship and vital role during this period. Trophoblast invasion, tissue regeneration, and

immune regulation between the mother and fetus are key processes mediated by Mφs, necessary for a successful pregnancy.

Cytokine balance is critical to prevent maternal immune rejection and ensure fetal survival. The Tregs are being investigated for

their essential role in maintaining immune homeostasis. Overall, the interaction of immune cells such as NK cells, Mφs, Tregs,

and cytokines is essential for successful pregnancy outcomes.

Conclusions: An imbalance among immune cells can lead to pregnancy complications such as preeclampsia and recurrent

pregnancy loss (RPL). The purpose of this review is to investigate the function of NK cells, Mφs, Tregs, and cytokines in the

context of healthy pregnancy.

Keywords: Maternal-Fetal Exchange, Pregnancy, Immune Tolerance, Immune System

1. Context

Pregnancy is a complex physiological state
characterized by profound immune changes that

facilitate successful fetal development. A successful

pregnancy depends on accurate and coordinated
communication between the fetus and the mother.

Immune cells and cytokine signaling pathways play a
prominent role as mediators of this communication (1).

During pregnancy, the maternal immune system

undergoes changes to tolerate the fetus. Natural killer
(NK) cells are known as the key immune cells of the

uterus during pregnancy, primarily covering the entire
endometrium. In normal pregnancy, these cells do not

exhibit cytotoxic properties and play a significant role

in implantation and placental regulation (2, 3).
Macrophages (Mφ), one of the main subsets of

leukocytes in the decidua region of the uterus, perform

a unique function in creating the immunological

aspects of the interaction between mother and fetus
due to their phenotypic flexibility (4, 5). Regulatory T

cells (Tregs), a vital component of the T lymphocyte

family, play a crucial role in maintaining
immunological tolerance and regulating immune

responses in both healthy and pathological processes.
Research indicates that Tregs prevent the development

of the maternal immune response against the fetus (6).
Pregnancy and delivery are regulated by cytokines, and

a disruption in the balance of these hormones can lead

to difficulties such as autoimmune illnesses or
microbial infections. This disorder may also cause

recovery from autoimmune disease during pregnancy

with recurrence after delivery (7, 8). Preeclampsia,

spontaneous abortion, and intrauterine growth
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restriction (IUGR) are common pregnancy

complications often resulting from abnormal

placentation and impaired placental function. In
preeclampsia, impaired trophoblast invasion and

inadequate remodeling of maternal spiral arteries lead
to reduced placental blood flow (9, 10). The imbalance

between antiangiogenic factors such as sFlt-1 and sEng

contributes to endothelial dysfunction, resulting in the
clinical manifestations of preeclampsia (11). In cases of

spontaneous abortion, defective trophoblast invasion
and reduced HLA-G expression may trigger maternal

natural killer (NK) cell activation, leading to fetal

rejection (12). For IUGR, placental insufficiency and

diminished uteroplacental blood flow deprive the fetus

of oxygen and essential nutrients (13). These disorders
not only increase the risk of fetal mortality but are also

associated with long-term metabolic and cardiovascular
complications in childhood and adulthood (14).

Therefore, it is important to expand knowledge to

understand the complexities of common immune
regulatory pathways in pregnancy to improve and

develop new strategies for the treatment of immune-
based infertility. Understanding the interactions

between NK cells, Tregs, and cytokines is crucial to

elucidate the underlying mechanisms in successful
reproductive processes and address pregnancy-related

complications. This study investigates the function of
NK cells, the vital role of Mφs during healthy pregnancy,

and the function of cytokines and Tregs in balancing

maternal and fetal immunity during healthy pregnancy.

2. Natural Killer Cells in Pregnancy: Supporting
Fetal Growth and Maternal Health

Natural killer (NK) cells constitute approximately 15%

of all circulating lymphocytes in humans. These cells

possess inherent cytotoxic qualities and are

characterized by their large size and granule-containing

nature. The NK cells secrete inflammatory mediators

such as interferon gamma (IFN-γ) and tumor necrosis

factor alpha (TNF-α), which contribute to cytotoxicity

and the generation of inflammatory cytokines (15, 16).

Phenotypically, NK cells are characterized by the

expression of surface receptors cluster of differentiation

(CD) 56 and CD16. Based on the concentration of CD56

antigen, NK cells can be divided into two groups:

CD56dim and CD56bright. The CD56dim type exhibits

high cytotoxicity in vitro, while the CD56bright type

produces important immune cytokines such as IFN-γ
(17). Typically, decidual natural killer (dNK) cells exhibit

the CD56brightCD16- phenotype, whereas peripheral

blood NK (pbNK) cells exhibit the CD56dimCD16+

phenotype (18). In humans, NK cells are exclusively

found in the decidua region of the uterus; thus, dNK and

uterine NK (uNK) cells are synonymous (19). The exact

origin of uNK cells remains unknown. These cells may
arise from the translocation of pbNK cells to the decidua

and the presence of local hematopoietic precursor cells
(HPC), as suggested by a study conducted on mice. The

HPCs isolated from the decidua can develop into uNK

cells in the presence of interleukin (IL) 15, which is the
primary factor for uNK cell activation and maturation

(19, 20). The population of blood leukocytes in the
endometrium undergoes changes during menstruation,

with the highest number observed in the secretory

phase and the lowest in the proliferation phase. At the

end of the secretory phase and the onset of pregnancy,

the population of uNK cells increases rapidly,
comprising about 70% of uterine leukocytes. This

population reaches its peak in early pregnancy, but their
numbers decrease as pregnancy progresses towards the

trimester stage (21). The performance of NK cells is

determined by the balance between signals received by
activating and inhibitory receptors (22). The growth of

the placenta and maintenance of the placental bed are
crucial for fetal development throughout pregnancy,

relying on fetal trophoblast invasion and the presence

of immune cells such as uNK cells. It is evident that uNK
cells are important for both trophoblast invasion and

spiral artery regeneration, as they are frequently
observed near regenerating spiral arteries and invading

fetal trophoblast cells (23). During trophoblast invasion,

trophoblasts separated from the embryo invade the
decidua and uterine wall, leading to vascular changes in

the uterine endometrium, known as decidualization.
Meanwhile, uNK cells proliferate and settle at sites of

trophoblast invasion. Extravillous trophoblasts (EVTs)

derived from the fetus and maternal uNK cells
regenerate maternal vessels and repair spiral arteries,

allowing maternal blood to flow into the placental villi
to supply nutrients and oxygen needed by the fetus (24,

25).

2.1. Types of Decidual Natural Killer Cells Based on RNA
Sequencing

Decidual tissue-resident markers such as CD49a and

CD9 can be expressed by dNK cells, which can be

categorized into three groups based on RNA

sequencing: dNK1, dNK2, and dNK3. The dNK1 group

expresses Beta-1,4-N-Acetyl-Galactosaminyltransferase 1

(B4GALNT1), CD39, and cytochrome P450 Family 26

Subfamily A Member 1 (CYP26A1). CD39 is a regulatory

ecto-ATPase that helps shift the environmental

equilibrium from pro-inflammatory to anti-

inflammatory. Additionally, this group shows increased
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expression of activating receptors KIR2DS1 and KIR2DS4,

which bind to HLA-Cs in trophoblasts, as well as

inhibitory killer cell immunoglobulin-like receptors

KIR2DL1, KIR2DL2, and KIR2DL3, which also bind to HLA-

Cs in trophoblasts. The dNK1 subgroup may interact
with EVTs, as evidenced by the expression of leukocyte

immunoglobulin-like receptor B1 (LILRB1), a receptor

with a high affinity for the HLA-G dimer, and an active

glycolytic metabolism.

The dNK2 group is indicated by the presence of

Annexin A1 (ANXA1) and integrin subunit beta 2 (ITGB2)

proteins, which express the activating receptors of NK

cell Group 2 isoform C (NKG2C), NKG2E, and the

inhibitory receptor NKG2A. The dNK3 group may express

T-cell immunoreceptor with Ig, CD161, immunoreceptor

tyrosine-based inhibition motif domains (TIGIT), CD103,

and ITGB2, although they do not express CD127 intrinsic

lymphocyte cell markers (15, 26, 27).

2.2. Utilizing the Function of Natural Killer Cells for Healthier
Pregnancies

Natural killer (NK) cell receptors (NKR), such as the

killer-cell immunoglobulin-like receptor (KIR),

leukocyte immunoglobulin-like receptor B (LILRB), C-

type lectin heterodimer family (NKG2, including NKG2A,

NKG2C, and NKG2D), and natural cytotoxicity receptors

(NCR), including NKp30, NKp44, and NKp46, are

responsible for regulating the activity of these cells (28).

Numerous studies have shown that dNK cells interact

with HLA ligands, including HLA-G, HLA-C, and HLA-E,

produced by extravillous trophoblasts (EVT), to reduce

the cytotoxicity of dNK cells (29). The NK cells express

KIR2DL4 and immunoglobulin-like transcript (ILT) 2 for

HLA-G. During HLA-G binding to the membrane, this

molecule interacts with KIR2DL4, ultimately leading to

the inhibition of dNK cell-mediated cytolysis and

suppression of their cytotoxic effects. HLA-G also plays a

role in spiral artery regeneration and fetal development.

HLA-E reduces NK cell toxicity through the inhibitory

receptor NKG2A/CD94. HLA-C and HLA-G interact with

their receptors on dNK1 to promote trophoblast

invasion, vascular remodeling, and the maintenance of

a high-immune-tolerance microenvironment for the

fetus (21, 30, 31).

Additionally, dNK1 cells have higher levels of

cytoplasmic granule proteins, including perforin 1,

granulysin, granzyme (Gzm) A, and GzmB, which

provide protection against placental infection and

glycolysis-related enzymes (29). The function of dNK

cells in the process of trophoblast invasion is regulated

by various cytokines, such as IFN-γ, TNF-α, granulocyte

macrophage colony-stimulating factor (GM-CSF), TGF-β,

and IL-10; chemokines, such as CXC motif ligand 8

(CXCL8)/IL-8, CC chemokine ligand (CCL) 3/MIP1a,

CCL4/MIP1b, CCL5/Rantes, CXCL10/IP-10, and CXCL12/SDF-

1; and angiogenic factors, such as angiopoietin (Ang) 2,

placental growth factor (PlGF), epidermal growth factor,
and vascular endothelial growth factor A (VEGF-A). For

instance, Ang-2, TNF, and TGF-β prevent trophoblast

invasion, but released CXCL8 and CXCL10 bind to their

receptors on invasive trophoblasts and promote

trophoblast motility (25, 27).

3. The Critical Functions of Macrophage Roles in
Healthy Pregnancy and Fetal Development

Macrophages play a crucial role during pregnancy in

healing damaged tissues and blood vessels, facilitating

trophoblast invasion, and maintaining tissue

homeostasis. They also serve as the primary antigen-

presenting cells (APCs) in the decidual region. After NK

cells, Mφs are the second largest population of decidual

leukocytes. Disruption of Mφ activity and changes in

their polarity (differentiation into specific phenotypes)

can lead to pregnancy disorders such as recurrent

spontaneous abortion (RSA), premature birth, infertility,

and preeclampsia (PE), which is also associated with

intrauterine growth restriction (IUGR). During the

embryo implantation stage, decidual macrophages

(dMφs) exhibit an M1 (proinflammatory) phenotype.

Following successful implantation, EVTs invade the

uterine stroma, where both M1 and M2 (anti-

inflammatory) Mφs are present. The M2 phenotype is

considered dominant in most dMφs to prevent embryo

rejection by the immune system (32-34). This is achieved

by increasing the expression of CD206, CD209, and

CD163, as well as the synthesis of TGF-β and IL-10. IL-10, IL-
13, IL-4, and macrophage colony-stimulating factor (M-

CSF) can activate M2 Mφs (4).

The dMφs produce IL-15, which promotes NK cell

proliferation. CXCL16, produced by trophoblast cells,

acts as an essential molecule in establishing M2 dMφ
polarity, leading to the polarization of M2 Mφs. This

results in the reduction of IL-15, inactivation of NK cells,

decreased cytotoxicity, and the creation of a suitable

environment for embryo development (35). Other

immune molecules secreted by dMφs include

prostaglandin E2 (PGE2) and indoleamine 2,3-

dioxygenase (36). Following a successful pregnancy, to

prevent the activity of maternal T lymphocytes, the

expression levels of CD80 and CD86, which are

identification markers of M1 Mφs, decrease. M2a, M2b,

M2c, and M2d are subgroups of M2 dMφs (34, 37).

dMφs are often derived from circulating monocytes

and contribute to successful mating through the
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secretion of cytokines and growth factors. They also

protect the embryo against various infections and

create immunological tolerance for semi-allogeneic

embryos. Fibroblast growth factor (FGF), VEGF-A,

keratinocyte growth factor (KGF), angiogenin (ANG),

Ang-1, and Ang-2 are among the factors released by dMφs

that contribute to spiral artery regeneration and

angiogenesis (38). The dMφs limit decidual T cells'

production of IFN-γ cytokines through interactions

between programmed death-ligand 1 (PD-L1)/CD274 and

programmed cell death protein 1 (PD-1)/CD274, resulting

in the weakening and inhibition of the immune system

due to inflammation (39) (Figure 1).

3.1. The Role of HLA-G in Modulating Macrophage Function
and Immune Tolerance During Pregnancy

In contrast to the conventional MHC-I molecules HLA-

A, HLA-B, and HLA-C, HLA-G is a non-classical form of

MHC-I that exhibits little variability. Membrane-bound

isoforms are produced by transcription of HLA-G2, HLA-

G3, and HLA-G4, while soluble isoforms are produced by

transcription of HLA-G5, HLA-G6, and HLA-G1. Both pre-

implanted embryos and EVTs express HLA-G. Soluble

HLA-G (sHLA-G) is present in amniotic fluid, umbilical

cord blood, maternal blood, and the culture media used

for in vitro fertilization (IVF) embryos (30).

KIR2DL4/CD158d, which serves as a receptor for HLA-G, is

not expressed in Mφs, unlike in NK cells (21). The

expression of inhibitory receptors ILT2/LILRB1 and

ILT4/LILRB2 by Mφs located near invasive EVTs for HLA-G

expressed by trophoblasts leads to negative intracellular

signals, alters the function of secreted cytokines, and

ultimately reduces the inflammatory response of the

maternal immune system (34, 40, 41).

The decrease in M1 Mφ markers followed by an
increase in M2 Mφ markers occurs due to the activation

of Mφs by sHLA-G5, ultimately leading to an increase in

the phagocytic activity of polarized Mφs. Regulating

immune tolerance between the mother and fetus, as

well as promoting placental growth, are important roles
of this process (21). Phagocytosis of apoptotic bodies

produced during the repair and regeneration of the
decidual membrane and spiral artery is necessary for

inducing tolerogenic immune responses, as it prevents

endothelial activity and the recruitment of monocytes.
Meanwhile, the phagocytic activity of Mφs against

necrotic cells can lead to maternal inflammatory
reactions against fetal antigens (38, 42).

Given that HLA-G expression occurs specifically

during pregnancy, its vital role in reproduction,

establishing immune tolerance, spiral artery

regeneration, and fetal growth is well-established.

Pregnancy complications caused by abnormal

expression levels of HLA-G and its polymorphisms have

been extensively studied in relation to their impact on

pregnancy (30, 41). Polymorphisms in the regulatory

regions of the HLA-G gene may influence its expression.

HLA-G is highly expressed in invasive trophoblast cells of

the placenta and is believed to play a role in pregnancy

complications such as preeclampsia, RSA, IUGR, and

preterm birth, all associated with immunological

dysfunctions. These complications have been linked to

low or undetectable levels of soluble HLA-G in maternal

circulation (43, 44).

Current research increasingly focuses on using HLA-G

as a promising therapeutic target. The dimeric form of

HLA-G has attracted significant attention due to its high

potential in disease treatment and improving

pregnancy outcomes. However, developing effective

therapeutic strategies requires a deeper understanding

of the molecular and immunological mechanisms

related to HLA-G and its interaction with different

genotypes. Promising strategies include inducing HLA-G

expression or using HLA-G-derived peptides to modulate

the maternal immune response. These approaches may

play a crucial role in preventing and managing

pregnancy-related complications (41, 45).

4. The Role of Cytokines in Facilitating Maternal-
Fetal Communication for a Healthy Pregnancy

The maternal immune system undergoes

fundamental changes to protect a healthy pregnancy.
Compared to the non-pregnant period, normal

pregnancy is characterized by a slight increase in serum

levels of both pro-inflammatory and anti-inflammatory

cytokines (46). Cytokines facilitate implantation,

placentation, and childbirth processes, while also
maintaining maternal immune tolerance. Among the

cytokines effective in successful pregnancy are IL-6 and

TNF-α, which are necessary for regulating inflammatory

responses. Dysfunction in cytokine expression during

pregnancy can lead to complications such as PE,
infection, intrauterine growth restriction (IUGR), and

premature birth (1, 8, 47). Cytokines act as

communication mediators between the blastocyst and

the endometrium during implantation and can also

support the placenta, enhance immunity, and promote
the invasive and proliferative phenotypes of

trophoblasts (8).

In contrast to Th2 cells, which produce anti-

inflammatory cytokines like IL-10, IL-4, and IL-13 that

contribute to wound healing and immunological

tolerance, T helper cells (Th) type 1 are responsible for

secreting pro-inflammatory cytokines IFN-γ and TNF-α
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Figure 1. Macrophage polarization, key features and their functional roles

(8, 48, 49). IL-1 and its family members, as

representatives of pro-inflammatory factors, regulate

some inflammatory diseases, including preterm birth

(50). Emerging cytokines such as IL-35, IL-37, and IL-38

are involved in human pregnancy. IL-35 is an inhibitory

cytokine necessary for increasing immune tolerance

and preventing fetal rejection by the mother. High levels

of IL-35 during pregnancy help reduce inflammatory

responses and are associated with successful pregnancy.

IL-37, similar to IL-35, has anti-inflammatory effects that

can prevent pregnancy complications such as PE. IL-38

also regulates inflammation and potentially maintains a

balanced immune environment during pregnancy (31,

51, 52).

IL-35 and IL-37 are involved in many inflammatory

diseases, autoimmune disorders, malignancies,

infectious diseases, and sepsis due to their anti-

inflammatory and immunomodulatory effects (53). IL-

35, often produced by CD4+ forkhead box protein P3
(FOXP3)+ Treg cells, was first identified in 2007. The

activity of these cytokines is necessary for the

suppressive properties of the Tregs population.
Activated B cells, tolerogenic dendritic cells (DCs), and

monocytes can produce and secrete this cytokine. IL-35

and TGF-β are responsible for increasing

immunosuppressive factors in the first trimester of

pregnancy, with IL-35 being the main

immunosuppressive factor in the second and third

trimesters. Consequently, there is a considerable drop in

IL-35 levels during recurrent pregnancy loss (RPL) (51). IL-

35 plays a crucial role in maintaining maternal-fetal

tolerance during pregnancy. This cytokine is produced

by trophoblast cells and promotes Th2 polarization,

essential for successful pregnancy. IL-35 increases the

production of IL-4 and IL-10 by Th cells, creating an

environment conducive to fetal tolerance (54).

The IL-1 family includes IL-37, identified in 2000. This

cytokine's molecular weight ranges from 17 to 25

kilodaltons, and its gene is located on chromosome 2. IL-

37 expression is typically modest but significantly rises

in response to inflammation (50). In normal

pregnancies, baseline levels of IL-37 are consistently

expressed in chorionic villous tissue and the umbilical
cord (55). In patients with preeclampsia, the level of IL-37

protein in the placenta shows more than a fivefold

increase compared to normal pregnancies (56). IL-38 is
naturally expressed in very low amounts; however,

disruption of IL-38 expression may cause many
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autoimmune diseases. IL-38 expression has been

observed in embryonic tissues and adult tissues, such as

the cardiovascular, respiratory, digestive, and

reproductive systems (52). In women affected by

preeclampsia, reduced levels of IL-37 and IL-38 lead to

overactivation of Th17 cells and disruption of placental

angiogenesis. These alterations contribute to placental

dysfunction and exacerbate the disease (57-59).

5. Critical Functions of Regulatory T Cells in
Supporting Healthy Pregnancy Outcomes

Regulatory T cells are a specific subset of T cells vital

for building tolerance and preserving immunological

homeostasis, particularly in pregnant women. Tregs

function as potent immune suppressors to reduce

inflammation and shield the fetus from immune system

rejection by the mother. They perform these processes

by suppressing the activity of effector T cells through

classical mechanisms such as direct cell contact or by

secreting certain cytokines (6). The FOXP3 transcription

factor, identified in 2003 after extensive studies on mice

(60), is the main gene for Treg differentiation, and its

stable expression is characteristic of Tregs (61).

Among human Treg cell subsets, effector Treg cells

(eTreg), which include CD4+CD45RA-FOXP3high, have

high suppressive properties, while naïve Treg cells

(nTreg), which include CD4+CD45RA+FOXP3low, possess

less suppressive properties. The subset of effective Treg

cells in late pregnancy is the most dominant type

compared to peripheral and decidual blood Tregs (62,

63). The Treg cell count in the uterus rises dramatically

in the middle to late stages of pregnancy. Late in

pregnancy, there are fewer Treg cells specific to the

paternal antigen in the uterine draining lymph nodes,

indicating that during mid- to late pregnancy, Treg cells

specific to paternal/fetal antigens migrate from the

uterine draining lymph nodes to the pregnant uterus

(64).

According to one study, in addition to the rise in Treg

cells during pregnancy, Tregs accumulate in the uterus

and draining lymph nodes each time a female mouse

approaches estrus. Pregnancy-related hormones such as

progesterone and estrogen, which change throughout

the estrous cycle, may contribute to Treg accumulation

(65). During estrus and early pregnancy, Tregs enter the

uterus via chemokines such as CCL1, CCL4, CCL17, and

CCL22. Approximately 70% of CD4+CD25+ Treg cells in

pregnant mice express CC chemokine receptor (CCR) 5,

which identifies CCL4. Additionally, the interaction of

CCR8 with CCL1 can enhance the immune suppressive

function of Treg cells by inducing the expression of

FOXP3, IL-10, TGF-β, and the production of granzyme B

(GzmB) (60).

FOXP3-HLA-G+ Tregs can express HLA-G and secrete

soluble HLA-G (sHLA-G), which exerts

immunoregulatory effects on a wide variety of immune

cells by interacting with inhibitory receptors such as

ILT2 (66, 67). Studies show that Tregs suppress NK cell

cytolytic function via TGF-β (68). TGF-β also suppresses

the functions of NK cells, DCs, and Mφs. The Tregs

interact with DCs via CTLA-4 and LAG3 (69). Fetal

trophoblast cells express and secrete several

immunosuppressive molecules that play an important

role in balancing Tregs (60, 70). Galectins have been

shown to be important in inhibiting the maternal

immune system by modifying some trophoblast

regulatory processes, including promoting Treg cell

development and inducing T cell death (67).

In addition to suppressing inflammatory responses

to create a suitable environment for fetal tolerance,

Tregs prevent complications such as spontaneous

abortion and PE (65, 70). Deficiencies in the Treg

population are associated with reproductive disorders,

highlighting their importance in pregnancy outcomes

(71).

6. Conclusions

The interaction between NK cells, Mφs, cytokines, and

Tregs forms a complex network essential for

establishing and maintaining a healthy pregnancy.

Understanding these interactions provides valuable

insights into the immunological mechanisms that

support maternal and fetal health. At the maternal-fetal

interface, the innate immune system—which includes

NK cells and Mφs—plays a crucial role in regulating

trophoblast invasion, vascular remodeling, and

immunological control. Additionally, Tregs of the

adaptive immune system are essential for preventing

the rejection of semi-allogeneic embryos and ensuring

maternal and fetal tolerance. The proper development

of pregnancy depends on the cytokine-mediated

balance of pro- and anti-inflammatory effects.

Selecting embryos with high HLA-G expression in IVF

increases the chances of pregnancy success. Modulating

regulatory cytokines or inhibiting inflammatory signals

can improve dNK cell function in cases of recurrent

miscarriage. The use of M2-polarization inducing factors

such as IL-10 or TGF-β can reduce embryo rejection in

immune infertility. Investigating future treatment

strategies can lead to improvements in maternal and

fetal health, increased immune tolerance, and reduced

risks related to pregnancy complications.
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