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Abstract

Context: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, characterized by hormonal

imbalances, ovarian dysfunction, and metabolic disturbances. The letrozole (LET)-induced rat model has been extensively

utilized in preclinical research to mimic PCOS-like phenotypes, providing insights into the underlying mechanisms and

potential therapeutic interventions.

Evidence Acquisition: A systematic review was conducted by searching PubMed, ScienceDirect, EMBASE, and Google Scholar

for studies published between 2020 and 2023. Keywords based on Medical Subject Headings (MeSH) included "polycystic ovary

syndrome", "animal model", and "letrozole". Articles were selected following PRISMA guidelines, with quality assessment based

on the Joanna Briggs Institute (JBI) criteria. Risk of bias was evaluated using the RoB 2 tool in conjunction with RevMan 5.41

software.

Results: Thirty-seven studies demonstrated that LET effectively induces PCOS-like traits in rats, including ovarian cysts,

irregular estrous cycles, hyperandrogenism, insulin resistance, and inflammation. LET’s mechanism involves aromatase

inhibition, leading to reduced estrogen levels and hormonal feedback disruption. This results in elevated luteinizing hormone

(LH) and androgen levels, mirroring the hormonal and structural complexity of human PCOS. Despite variations in dosing

protocols, LET consistently produces phenotypes relevant to PCOS, enabling comprehensive exploration of its pathophysiology

and evaluation of therapeutic strategies.

Conclusions: The LET-induced rat model of PCOS serves as a reliable platform for understanding the disorder's mechanisms

and testing interventions. Although it does not perfectly replicate human PCOS, this model provides essential insights into

hormonal, metabolic, and structural changes associated with the condition. Refinements or complementary approaches to

enhance translational relevance may further improve its utility in advancing treatments for PCOS and mitigating its impact on

women's health and fertility.
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1. Context

Polycystic ovary syndrome (PCOS) is one of the most

common endocrine disorders in women of reproductive

age and has a long-lasting impact on health and fertility

(1). This multifaceted syndrome is characterized by a

spectrum of symptoms, including hormonal imbalance,

ovarian dysfunction, hyperandrogenism, insulin

resistance, and irregular menstrual cycles (2). Despite its

significant impact on women's health and fertility, the

exact etiology of PCOS remains elusive, necessitating the

development of animal models that can precisely mimic

its phenotype (3, 4).

In the quest to better understand PCOS and explore

potential therapeutic interventions, the establishment

of animal models that closely mimic the condition

becomes imperative. Among the various animal models

employed, rats have emerged as a particularly valuable

species due to their physiological similarities with

humans and ease of handling in laboratory settings (5).
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Various induction methods have been utilized to induce

PCOS-like conditions in rat models, including hormone

administration, genetic manipulation, and

environmental perturbations (4, 5).

Among the multitude of induction methods,

letrozole (LET), a potent aromatase inhibitor, has

garnered significant attention for its efficacy in

inducing PCOS-like phenotypes in rat models. LET's

ability to disrupt the delicate hormonal balance,

particularly by inhibiting the conversion of androgens

to estrogens, closely mirrors the hormonal

dysregulation observed in PCOS (4, 6). Understanding

the mechanisms underlying LET induction and the

resulting phenotypes is pivotal for elucidating the

pathophysiology of PCOS and developing targeted

therapeutic strategies.

2. Objectives

This review aims to provide a comprehensive

examination of LET as an induction agent for PCOS

models in rats. By delving into the mechanisms by

which LET exerts its effects and the phenotypic

manifestations it elicits, we can gain invaluable insights

into the pathogenesis of PCOS. Furthermore, elucidating

the nuances of LET-induced PCOS models will not only

advance our understanding of the syndrome but also

pave the way for the development of novel therapeutic

interventions aimed at alleviating its burden on

women's health.

3. Evidence Acquisition

We conducted a comprehensive search of research

articles published between 2020 and 2023, utilizing

PubMed, ScienceDirect, EMBASE, and Google Scholar.

Keywords aligned with Medical Subject Headings

(MeSH) were employed, covering topics such as "animal

model", "experimental animal", "laboratory animal

model", "PCOS" and "letrozole", following PICOT criteria

as outlined in Table 1. The research selected for the

review is experimental animal research with a

comparative design involving a control group. The

allocation of animals into groups was carried out

randomly (randomized allocation), with the application

of blinding methods for both animals and researchers

involved in data measurement and analysis. The sample

size was based on the ARRIVE guidelines (animal

research: Reporting of in vivo experiments) and OECD

guidelines for animal studies (6 - 10 animals per group).

Letrozole used in the study, in accordance with

laboratory research standards but not for human

consumption, was obtained from suppliers that provide

specifically for research purposes, such as Sigma-

Aldrich, LKT Labs, Rasa Research, MA Research Chems,

Pharmaffiliates, and USV. Evaluation of study quality

adhered to Joanna Briggs Institute (JBI) critical

assessment and PRISMA guidelines (7). Duplicate

literature was identified and excluded, while the

remaining articles underwent two-stage screening

based on predetermined inclusion criteria, as presented

in Figure 1. This process was conducted by both

reviewers to ensure accuracy and minimize errors. Risk

of bias was assessed using the RoB 2 tool (8) with

RevMan 5.41 software, as depicted in Figures 2 and 3.

Table 1. Inclusion and Exclusion Criteria

Criteria Inclusion Exclusion

Population Rat model In vitro

Intervention LET LET combination with other
treated

Comparators With control group Without control group

Outcomes Research shows PCOS
phenotype

Does not form PCOS phenotypes

Time Within the past five years More than the past five years

Study design Experimental research
Analytical observational
research

Language Indonesian, English Besides Indonesian and English

Abbreviations: PCOS, polycystic ovary syndrome; LET, letrozole.

https://brieflands.com/articles/chbs-159924


Kurniawati EY et al. Brieflands

Compr Health Biomed Stud. 2024; 3(1): e159924 3

Figure 1. PRISMA Flow Chart

Figure 2. Risk of bias graph

4. Results

Thirty-seven research articles were included in this

study. The LET induction dose, duration, method of

administration, and PCOS phenotypes observed in the

experimental models are presented in Table 2. The use of

LET in the PCOS rat model aims to induce conditions

that resemble the characteristics of PCOS in humans.

The mechanism of LET induction in the PCOS rat model

is through aromatase inhibition, leading to decreased

estrogen production, increased luteinizing hormone

(LH) and androgen levels, and disrupted hormonal

feedback (Figure 4). LET functions as an aromatase

inhibitor, an enzyme involved in the conversion of

androgens to estrogen. By inhibiting aromatase, LET

causes an overall decrease in estrogen production in the

rat body (9, 10). The decrease in estrogen levels

stimulates the release of LH from the pituitary gland.

Reduced estrogen negative feedback on the pituitary

gland can increase LH production (6, 10). Increased

levels of LH can stimulate the ovaries to form antral

follicles or cyst-like structures (11, 12). The antral follicles

may become abnormal, and their increased numbers

create a condition that resembles polycystic ovaries (6,

13, 14). Increased LH and hormonal imbalance can lead

to ovulation disorders or anovulation (10, 15-19). The rat's

menstrual cycle may become irregular or cease due to

this hormonal disruption (20-24). Decreased estrogen

production and increased LH may contribute to

elevated androgen levels in the ovaries of rats (24-27).

Increased androgens may play a role in the

development of abnormal antral follicles (11, 23).

Abnormal or non-ovulating antral follicles may develop

into cyst-like structures (18, 28-30). These structures may

reflect the characteristics of polycystic ovaries seen in

women with PCOS. This mechanism creates an

unbalanced hormonal condition and can lead to

hormone patterns that resemble PCOS in humans (6, 31,

32).

Figure 4. Mechanism of letrozole (LET) on rat polycystic ovary syndrome (PCOS)
phenotype

Letrozole consistently produces various phenotypes

similar to PCOS in humans, such as ovarian cysticity,

irregular estrous cycles, hyperandrogenism, insulin

resistance, and inflammation (25, 33, 34). This reflects
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Table 2. Phenotypic Features of Polycystic Ovary Syndrome in Letrozol-Induced Mice

Dose Duration PCOS Phenotipe Reference

LET 4.5 mg s.c implant 90 (d) Cystic ovary; irregular estrous cycle; hyperandrogenicInsulin resistance (6)

LET 50 μg s.c implant 60 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic; inflammation (14)

LET 1 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic; insulin resistance (11)

LET 1 mg/kg p.o 21 (d) Cystic ovary; hyperandrogenic (12)

LET 1 mg/kg p.o 5 (wk) Cystic ovary; irregular estrous cycle; hyperandrogenic; insulin resistance; inflammation (35)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; inflammation (22)

LET 1 mg/kg p.o 28 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic (10)

LET 1 mg/kg p.o 21 (d) Cystic ovary; inflammation (36)

LET 1 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic (27)

LET 6 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic; insulin resistance (25)

LET 1 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic; insulin resistance (28)

LET 1 mg/kg p.o 21 (d) Cystic ovary; hyperandrogenic; inflammation; insulin resistance (9)

LET 35 mg/kg p.o 4 (wk) Cystic ovary; irregular estrous cycle; hyperandrogenic; insulin resistance (37)

LET 1 mg/kg p.o 21 (d) Hyperandrogenic; inflammation; insulin resistance (38)

LET 6 mg/kg p.o 21 (d) Irregular estrous cycle; hyperandrogenic; inflammation; insulin resistance (33)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; hyperandrogenic; cystic ovary (30)

LET 6 mg/kg p.o 21 (d) Cystic ovary; anovulation; hyperandrogenic; insulin resistance; inflammation (34)

LET 1 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; hyperandrogenic; inflammation (32)

LET 1 mg/kg p.o 21 (d) Cystic ovary; irregular estrous cycle; insulin resistance (29)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; cystic ovary; hyperandrogenic (39)

LET 1.8 mg/pellet s.c implant 60 (d) Arrest estrous cycle; hyperandrogenic; inflammation; cystic ovary (40)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; cystic ovary; hyperandrogenic; insulin resistance (21)

LET 1 mg/kg p.o 21 (d) Anovulation; hyperandrogenic; insulin resistance; inflammation; cystic ovary (16)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; hyperandrogenic; insulin resistance; cystic ovary (23)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; inflammation; hyperandrogenic; insulin resistance; cystic ovary (20)

LET 1 mg/kg p.o 21 (d) Inflammation; hyperandrogenic; insulin resistance; anovulation (15)

LET 400 μg/kg s.c implant - Anovulation; cystic ovary; hyperandrogenic; insulin resistance (17)

LET 1 mg/kg p.o 21 (d) Cystic ovary; hyperandrogenic; insulin resistance (41)

LET 1 mg/kg p.o 28 (d) Cystic ovary; hyperandrogenic; anovulation (26)

LET 1 mg/kg p.o 21 (d) Irregular estrous cycle; cystic ovary; anovulation; hyperandrogenic; insulin resistance (42)

LET 1 mg/kg p.o 21 (d) Cystic ovary; anovulation (18)

LET 3 mg/kg p.o 40 (d) Cystic ovary; hyperandrogenic; insulin resistance; inflammation (43)

LET 1 mg/kg p.o 3 (wk) Hyperandrogenic; insulin resistance; inflammation; multiple cysts (31)

LET 1 mg/kg p.o 21 (d) Cystic ovary; hyperandrogenic; anovulation; inflammation (19)

LET 1 mg/kg p.o 21 (d) Cystic follicle; insulin resistance (44)

LET 1 mg/kg p.o 3 (wk) Anovulation; cystic follicle; hyperandrogenic; insulin resistance; microbiota-inflammation (45)

LET 50 μg s.c implant 60 (d) Irregular estrous cycle; hyperandrogenic (24)

Abbreviation: PCOS, polycystic ovary syndrome.

the complexity of the PCOS condition involving

multiple hormonal and pathophysiological aspects (13,

14). The use of LET as an induction agent for the PCOS

model in mice provides an advantage in preclinical

research, producing a phenotype similar to human

PCOS with good consistency. With the ability to induce a

phenotype like PCOS, this model can be used to test the

effectiveness of various potential therapies and to

understand the biological basis of PCOS.

The LET-induced PCOS mouse model is a research

approach to understanding the biological basis of PCOS

and is not a perfect representation of the human

condition. Nonetheless, this mouse model can provide

insight into the hormonal and structural changes that

occur in PCOS. Although the LET-induced PCOS model

mimics several features of the human condition, there

are notable differences between the rat models and

human PCOS. These differences highlight the

limitations of this model in fully replicating the
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complexity of human PCOS. Variations in hormonal

regulation, ovarian structure, and metabolic responses

between rats and humans may affect the translational

value of the findings. Further refinement of the rat

model could enhance its applicability in PCOS research.

Suggestions for improvement include modifications to

better replicate the hormonal and metabolic profiles

observed in human PCOS. Exploring the use of

combined models or alternative animal models may

address some of the limitations of the current approach

and improve the translational relevance of the findings.

Future research should consider these refinements to

optimize the utility of animal models in understanding

PCOS pathophysiology and developing effective

treatments.

5. Conclusions

The LET-induced PCOS mouse model replicates key

features of human PCOS, including ovarian cyst

formation, irregular estrous cycles, hyperandrogenism,

insulin resistance, and inflammation. LET inhibits

aromatase, reducing estrogen production, disrupting

estrogen negative feedback, and increasing LH and

androgen levels. While this model provides valuable

insights into PCOS pathophysiology, it has limitations.

Physiological and metabolic differences between

rodents and humans may affect the translation of

results. Additionally, it lacks certain human-specific

factors, such as genetic and environmental influences

on PCOS.

Despite these limitations, the LET-induced model

remains a useful tool for studying PCOS mechanisms

and testing potential therapies. Future research should

refine the model to better mimic human PCOS by

incorporating dietary and genetic factors.

Complementary approaches, such as alternative animal

models or in vitro systems, could enhance translational

relevance. Recognizing these limitations while

optimizing the model will improve its applicability in

developing effective PCOS treatments.
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Figure 3. Risk of bias summary (6, 9-45)
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