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Abstract

Background: It showed that the infiltration of macrophages into adipose tissue is the origin of inflammation. Despite the positive
effect of training and octopamine on the inflammatory process and adipose tissue permeability to macrophages, the simultaneous
effect of aerobic training (AT) and octopamine (O), as a lipolytic agent on macrophage permeability in a high-fat diet situation, is
unclear.
Objectives: This study aimed to investigate the effect of AT and O supplementation on CD86 and CD206 concentration in white
adipose tissue of rats poisoned with deep-fried oil (DFO).
Methods: A total of 30 male Wistar rats were divided into groups, including healthy control, DFO control, AT + DFO, O + DFO, and AT
+ O + DFO. During the four weeks the O groups received 81 µmol/kg octopamine for five days/week intraperitoneally, and AT groups
performed training with moderate intensity (26 m/min). Forty-eight hours after the last intervention, the rats were anesthetized
and subcutaneous adipose tissue was removed for CD86 and CD206 assays.
Results: DFO significantly increased CD86 and reduced CD206; AT was able to reduce the CD86 increase, however, it had no effect
on CD206; O significantly reduced CD86 and increased CD206; in addition, interaction of AT and O on CD86 was significant.
Conclusions: Both AT and O can reduce the negative effect of deep-fried oil on macrophage permeability in adipose tissue.
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1. Background

Chronic inflammation in adipose tissue causes
metabolic diseases (1). Numerous studies have shown
that adipocyte enlargement is associated with increased
expression of inflammatory factors and decreased levels
of anti-inflammatory factors (2, 3). Increased secretion
of inflammatory factors is the major cause of mild in-
flammation in the adipose tissue. Some studies have
identified immune cell infiltration into adipose tissue,
which secretes inflammatory factors, as a key factor in
the inflammation (4-6). For unknown reasons, under
inflammation conditions, M2 phenotype macrophages,
which are mainly anti-inflammatory in lean conditions,
are replaced with a variety of M1 phenotype macrophages,
which secrete the inflammatory cytokines, and its result
is justification of pathogenesis of obesity-induced insulin
resistance (7, 8). CD86 is from the M1 phenotype group and
CD206 is from the M2 group phenotype. There are pieces of

evidence where in the obese condition the CD86 levels in-
crease (9, 10). CD206 plays a role in cell repair and recovery
(11-13). Aerobic training (14) are recommended as an ap-
propriate way to prevent and treat inflammation-induced
problems. Sympathetic mimicking phytochemicals can
also decrease the inflammation process by increasing
lipolysis and altering adipose tissue metabolism (15, 16).
Octopamine (O) is an endogenous amine that, due to its
close association with norepinephrine, can mimic the
sympathetic function in many tissues and act as neu-
rotransmitter invertebrates. O affects adrenergic and
dopaminergic systems (17). The effects of O are included
antioxidant (18), anti-inflammatory (19), weight loss, and
fat burning (20).

2. Objectives

In regards to noted sentences the present study aimed
to review the effect of AT and O supplementation on
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macrophage markers in white adipose tissue of rats poi-
soned with deep-fried oil (DFO).

3. Methods

A total of 30 male Wistar rats, aged 20 weeks, weigh-
ing 300 - 350 g were purchased from Razi Institute (Iran).
The rats were kept in standard conditions for one week to
adapt to the laboratory environment. Rats were divided
into groups including healthy control, DFO control, AT +
DFO, O + DFO, and AT + O + DFO. During four weeks the O
groups received 81µmol/kg octopamine for five days/week
intraperitoneally and AT groups performed training with
moderate intensity.

3.1. DFO Preparation

A total of 8 liters of sunflower oil was used to produce
heated oil. The oil was heated for four consecutive days for
eight hours at a temperature of 190 - 200ºC and chicken
nuggets, potatoes, poultry, and protein products (sausages
and sausages) were dipped into the oil every 30 minutes,
according to references, and finally, the fourth-day oil was
kept for use as a poisoning intervention and fed orally to
rats for four weeks (21).

3.2. O Administration

O supplements were purchased from the Sigma
Aldrich Company. During four weeks the O groups re-
ceived 81 µmol/kg O supplementation (dissolved in 9 %
normal saline) for five days/week intraperitoneally.

3.3. AT Protocol

To adapt to training, the rats ran on the treadmill for 20
minutes at a speed of 9 m/min, for one week. Training du-
ration was 20 minutes and the intensity of training started
with 16 m/min in the first week and reached to 26 m/min
on the last training session (forth week). For the start of
training the rats warmed up for five minutes at a speed of
7 m/min and at the end of the main training, they cooled
down for five minutes at a speed of 5 m/min.

3.4. Sacrifice and Tissue Sampling

Forty-eight hours after the last intervention, rats fasted
for 8 - 10 hours and were weighed before sacrificing. The
anesthesia was inhaled with chloroform. Blood samples
were taken from the left ventricle. The white adipose tissue
was then rapidly removed, washed with saline, and placed
in microtube. Samples were transferred into a nitrogen
tank and then stored at -80ºC until cell analysis.

3.5. Cd-86 and Cd-206 Measurements

Cell isolation was done from adipose tissue by tripsine
0.25% and DNase in 37ºC for 30 min and centrifuged at
4ºC, 1200 RPM for 5 min. Single cells were used to iden-
tify monocyte/macrophage lineage surface markers CD206
and CD86 antibodies. Flow cytometric analysis was per-
formed using a Navios Flow Cytometer and the Kaluza anal-
ysis software (Beckman Coulter, Milan, Italy), evaluating a
total of 5× 105 cells and detecting more than 30 events in
the smallest subset investigated, according to consensus
guidelines on the minimal residual disease.

3.6. Histological Analysis

Samples were placed into a 30% sucrose solution pre-
pared in PBS for three days at 4ºC. Samples were removed
from the sucrose solution and placed directly into a “cry-
omold” containing sufficient optimal cutting temperature
compound (OCT) embedding media to fully submerse the
tissues. The entire cryomold was then placed onto the cry-
obar inside the cryostat and, by using a press tool. Frozen
tissues were recovered from the cryomold and affixed to
a textured cryosectioning plate using OCT as an adhesive.
Each section was then placed in separate dry microscope
slides (thickness: 8 µm). Placing sections directly into PBS
quickly dissolves any residual OCT and ensures that the sec-
tions stay hydrated; the hydration step improves overall
image quality. H & E staining was done and the pictures
were captured and analyzed by Image J to count adipocyte
cells.

3.7. Statistical Model

In the descriptive section, the mean (M) and standard
deviation (SD) indices were used. Inferential statistics and
hypothesis testing were analyzed using two-way analysis
of variance for independent groups. Based on this model,
at first, the effect of AT and O alone on the outcome was an-
alyzed and the interactive effects of AT and O on outcomes
were tested. To determine the effect of poisoning with DFO
on outcomes of the study, independent sample t-test was
performed for independent groups of healthy control and
DFO control groups. Significance level was considered P <
0.05 for all calculations.

4. Results

CD86 cell percentage was significantly higher in the
DFO group compared with the healthy control group (P =
0.001) (Figure 1).

AT significantly reduced CD86 cell percentage com-
pared to untrained rats (F = 2412.72, P = 0.001, µ = 0.992). O
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Figure 1. CD86 cell percentage in DFO rats compared to healthy control rats. Data
are reported as mean ± SD. *Significant changes compared to healthy control. The
rats in DFO-control group had deep-fried oil consumption for four weeks.

supplementation significantly reduced CD86 cell percent-
age compared to their control group (F = 2142.85, P = 0.001,
µ = 0.991). Interaction of AT and O on reduction of CD86
cell percentage was significant, so that AT simultaneously
with O consumption had more effect on reduction of CD86
cell percentage rather than each one alone (F = 1432.44, P =
0.001, µ = 0.986) (Figure 2).

DFO consumption significantly reduced CD206 cell
percentage in DFO rats compared to healthy control rats (P
= 0.001) (Figure 3).

AT had not significant effect on the CD206 cell percent-
age (F = 1.72, P = 0.204, µ = 0.079). O supplementation sig-
nificantly increased CD206 cell percentage compared to no
supplement groups (F = 2228.75, P = 0.001, µ = 0.991). The
CD206 cell percentage in AT + O group was significantly
higher than the training and control. AT + O had no signif-
icant changes compared to the O group (F = 0.97, P = 0.335,
µ = 0.047) (Figure 4).

The Flowcytometric assessment of MI and MII
macrophage markers in adipose derived cells in dif-
ferent experimental groups of the present study are
shown in Figure 5. Results showed that the number of
adipose cells in visceral adipose tissue was higher in the
DFO control group than the other groups. In addition,
the results showed that in a certain unit of tissue, this
cell population was also increased in the AT and O groups
compared to the healthy control group. However, these
two groups had significantly less adipose cells than the
DFO control group. In the AT and O groups, these cells
were significantly reduced, which was not significantly
different from the healthy control group. Based on the
histological images, it was found that in the groups that
had increased adipose cell population, the diameter of
each adipose vacuole decreased, however, in the groups
that had decreased cell population, the adipose vacuoles

diameter increased. It seems that as the amount of DFO
in the groups increases, the adipose cell population first
increases and then the cells begin to become obese and
hypertrophy, which this trend indicates a gradual increase
in adipose tissue (Figure 6).

5. Discussion

The findings of the present study showed that DFO con-
sumption significantly increased CD86 cells and decreased
CD206 cells. Numerous studies have suggested the role of
adipose tissue macrophages in inflammation (5, 7, 22, 23).
The increase in the number of adipose tissue macrophages
can be justified by two distinct mechanisms. The first
is a change in macrophage recruitment from monocytes
and the second a local proliferation of macrophages called
from adipose tissue. It has been suggested that the largest
population of macrophages in adipose tissue of obese
mice is the M1 phenotype macrophages, which is associ-
ated with increased expression of inflammatory media-
tors such as tumor necrosis factor-α (TNF-α) (12). In con-
trast, the largest population of macrophages in lean condi-
tions is M2 phenotype members, which is associated with
the gene expression of anti-inflammatory proteins such
as IL-10 (7). In this study, CD86 from M1 phenotype and
CD206 from M2 phenotype were studied and the findings
obtained from DFO consumption are consistent with the
findings in this area. The consumption of DFO significantly
increased the CD86 population, while the CD206 popu-
lation reduced significantly, which indicates a change in
macrophage population pattern under obesity conditions.
Fatty acid increase in adipose tissue seems to activate the
TLR4, NF-κB, IKKβ, and JNK, which each of these substances
stimulate inflammatory cytokines such as TNF-α, IL-6, and
iNOS (24). These inflammatory cytokines and proteins in-
volved in the feedback loop between adipocytes and cir-
culating monocytes increase polarization of M1 phenotype
macrophages and increase their penetration into adipose
tissue. Accordingly, an increase in CD86 may be justified
by consumption of DFO. Another finding of the present
study showed that AT significantly reduced CD86 levels
in rats fed DFO, however, AT had no significant effect on
CD206 levels. AT is associated with anti-inflammatory re-
sponses in various organs such as skeletal muscle, liver,
and adipose tissue (25). AT can reduce visceral fat mass
and subsequently reduce the production of inflamma-
tory adipokines, decrease in expression of quasi-tail recep-
tors in monocytes and macrophages, as well as produce
anti-inflammatory molecules from leukocytes and skeletal
muscle (26, 27). Inhibition of monocyte/macrophage infil-
tration into adipose tissue and alteration of macrophage
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Figure 2. CD86 cell percentage in different groups of the present study. Data are reported as mean ± SD. All groups had deep- fried oil consumption for four weeks.
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Figure 3. CD206 cell percentage in DFO control rats compared to healthy control
rats. Data are reported as mean± SD. *Significant changes compared to healthy con-
trol. The rats in DFO-control group had deep-fried oil consumption for four weeks.

phenotype into adipose tissue are results of training (27-
29). The anti-inflammatory effect of training may reduce
inflammation by induction of change of M1 macrophage
to M2 macrophage levels in adipose tissue as well as by re-
ducing adipose tissue permeability to macrophages and
protecting against chronic inflammatory diseases. Accord-
ingly, it has been shown that running on the treadmill (in
obese mice) decreased the expression of M1 macrophage
marker and increased M2 macrophage marker (28). On the
other hand, decreased TNF-α mRNA expression and CD11c
levels after training in HFD mice have been reported (30).
According to the above findings, it seems that the decrease
of CD86 in this study can be attributed to the decrease
of fat cell size in the AT group compared to the DFO con-
trol group. As noted, due to the decrease in adipose cell
size, the rate of M1 phenotype macrophage entry reduces,
which was observed in the present study. Nonetheless, AT

had no significant effect on CD206 in adipose tissue. In
a study, it has been shown that in mice with HFD, train-
ing couldn’t increase the levels CD206 cells, however, it
has even decreased (14), which researchers believe that im-
proving the inflammatory profile in HFD mice with train-
ing may be due to a decrease in both M1 and M2 phenotype
macrophage in adipose tissue.

Another finding of the present study showed that O ad-
ministration decreased CD86 levels and increased CD206
in adipose tissue. O enhances the process of lipolysis
by activating β3-adrenoceptors in adipose tissue (31). In-
creased lipolysis in adipocytes attenuates the accumula-
tion of fatty acids and this decrease weakens the inflam-
matory mediators (24). As a result of the decrease in in-
flammation, macrophage permeability to adipose tissue
decreased and a change in macrophage pattern from M1 to
M2 phenotype is observed (7, 25). Interaction of AT and O on
reduction of CD86 was significant. Both AT and O appear to
decrease the permeability of these macrophages through
decreasing adipose cell size and inflammatory mediators.
Although in the AT + O group the CD206 levels were higher
than AT and O groups alone, the observed interaction was
not statistically significant. It appears that the effect of AT
and to some extent O is more on the M1 phenotype than on
the M2 phenotype.

5.1. Conclusions

The results of this study showed that feeding with DFO
changed the permeability of adipocytes to macrophages
and increased CD86 entry and decreased CD206. Nonethe-
less, AT can affect this migration process and reduce CD86
penetration into adipose tissue, although it did not affect
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Figure 4. CD206 cell percentage in different groups of the present study. Data are reported as mean ± SD. All groups had deep-fried oil consumption for four weeks.

Figure 5. Flowcytometric assessment of MI and MII macrophage markers in adipose derive cells in different experimental groups. CO: healthy-control, I: DFO-control, H:
DFO-training, B: DFO-octopamine, C: DFO-training-octopamine. DFO: deep-fried oil consumption.

CD206 penetration. However, O was able to alter the per-
meability of adipose tissue to macrophages and reduces
the negative effects of feeding with DFO. Interaction of AT

and O was significant only on CD86. It appears that AT and
O were more influenced on the process of M1 phenotype
than M2. Nevertheless, the decrease in adipose cell size
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Figure 6. Histological images in research groups. CO: healthy-control, I: DFO-control, H: DFO-training, B: DFO-octopamine, C: DFO-training-octopamine. DFO: deep-fried oil
consumption.

may be the main cause of the change in macrophage per-
meability in adipose tissue. The anti-inflammatory effects
of AT and O appears to be justified by these changes. How-
ever, further studies are needed.
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