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Abstract

Background: Autophagy is a vital cell survival mechanism that authorizes cells to assort to metabolic stress and is essential for
the development and maintenance of cellular and tissue homeostasis, as well as the prevention of human disease. It has also been
shown that autophagy plays a significant role in the development and differentiation of stem cells, as well as induced pluripotent
stem cells (iPSCs).
Objectives: The present study aimed to examine the mRNA expression of the ATG5 gene, one of the key markers of autophagy in
human iPSCs (hiPSCs) during endoderm induction.
Methods: In this study, we cultured the human iPSC line (R1-hiPSC1) on mitomycin-C, inactivated mouse embryonic fibroblasts (MEF)
layer, and used hanging drop protocol to generate embryoid body (EB) and expose differentiation. The Real-time PCR method was
used to examine the mRNA expression level of ATG5 in hiPSC during endoderm induction.
Results: Our results demonstrated the high mRNA expression of ATG5 in the mesendoderm induction (MEI) stage, which shows the
high rate of autophagy in MEI days rather than the other stages of differentiation.
Conclusions: The modification of ATG5 gene expression within hiPSC during endoderm induction shows the importance of au-
tophagy assessments in hiPSC differentiation. Therefore, subsequent studies are needed to clarify the details of autophagy effects
on hiPSC differentiation.
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1. Background

The characteristics of pluripotency can be achieved by
ectopic expression of specific transcription factors in em-
bryonic stem cell (ESC)-like cells can reprogram and gener-
ate induced pluripotent stem cells (iPSCs), which has cre-
ated a new generation of therapy and research (1). The
human iPSCs (hiPSC) and human ESCs (hESC) can be self-
renewed and differentiated into all human cells when ex-
posed to the proper developmental cues (2). Thus, these
differentiated cells can be used as a source in a wide range
of experiments to test potential treatments and drugs for
diseases. Despite the high qualities of ESCs to differenti-
ate toward different types of cells, the utilization of human
ESCs has an ethical concern because they are acquired from
the inner cell mass of blastocysts (3).

Unlike hESCs, iPSCs are generated from wholly dif-

ferentiated adult donor cells. They contribute the same
hereditary data with the donor and are detected as own
cells by the donor’s immune system, which provides the
inspiring ability for therapies with patient-derived iPSCs
and does not need to suppress the immune system (4).
Stem-cells are a reproducible and almost limitless source
of transplantable cells and tissues used in disease ther-
apies. All these ongoing and supreme improvements in
the cell transplantation field require methods to generate
high-quality cells, techniques to suppress the immune sys-
tem, or strategies to differentiate stem-cells into favorable
functional cells (5).

As the main modulator, autophagy is an extremely-
conserved procedure, which helps attain accurate mor-
phology and function of cells via the regulation of pro-
tein modification (6). Two processes for ubiquitin-like
conjugation are needed to produce the autophagosomes.
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Autophagy-related gene (ATG) 5 is essential for both of
these pathways. Recent reports have shown high rates
of autophagy activity during iPSC derivation and mainte-
nance (6). Furthermore, autophagy-related proteins (ATG)
can increase autophagy and inhibit endoplasmic reticu-
lum stress (7).

2. Objectives

The current study aimed to examine the mRNA expres-
sion of the main autophagy marker gene (ATG5) in differ-
ent differentiation levels of iPSC toward insulin-producing
cells.

3. Methods

3.1. Cell Culture

The human iPSC line (R1-hiPSC1-Royan Institute,
Tehran, Iran) was cultured on the layer of mitomycin-
C inactivated mouse embryonic fibroblasts (MEF)
and fed with an iPSC medium. The culture medium
comprised Dulbecco’s modified Eagle’s medium
(DMEM)/Ham’s F12, L-glutamine, non-essential amino
acids, β-mercaptoethanol, streptomycin, penicillin, ITS,
b-FGF, and knockout serum replacement (KSR). The hang-
ing drop method was conducted to generate embryoid
body (EB) in the first step of differentiation. The iPSCs were
differentiated toward definitive endoderm according to
the method described with details in our previous study
(8). The ATG5 gene expression was analyzed during dif-
ferentiation, including iPSC, EB, mesendoderm (ME), and
definitive endoderm (DE) stages.

3.2. Quantitative Real-time-PCR

Allprep RNA extraction kit (Qiagen, USA) and Takara
(Japan) cDNA Synthesis Kit were used for total RNA extrac-
tion and complementary DNA synthesis. Quantitative RT-
PCR (qRT-PCR) was performed via the StepOnePlus Real-
time PCR system. We evaluated the relative mRNA expres-
sion levels by the 2-∆∆Ct method (∆Ct illustrates the dif-
ference between the ATG5 target gene and GAPDH control
gene) and compared the fold changes with the non-treated
hiPSC line.

The reaction mixture was made of CYBR green I mas-
ter mix 2X (5 µL -Takara, Japan), ROX dye (0.2 µL), primers
(10 pM each one), and 1 µL cDNA. Thermal condition-
ing was set as follows: one step at 95˚C (initial denat-
uration) for 30 s, then 40 cycles, including 95˚C for 5
s, 58˚C for 15 s, and 72˚C for 20 s. The sequence of

forward and reverse primers of the ATG5 gene were 5’-
GGCCATCAATCGGAAACTC-3’, 5’-AGGTCTTTCAGTCGTTGTCT-
3’, and forGAPDH were 5’-GGACTCATGACCACAGTCCA-3’ and
5’-CCAGTAGAGGCAGGGATGAT-3’.

3.3. Statistical Analysis

The fold change calculation, descriptive statistics, and
Graph design were performed by GenEX v.6.1, EXCEL v.2017,
and GraphPad Prism v7.01 software, respectively. The differ-
ent stages of differentiation were compared using One-way
ANOVA with Tukey-Kramer’s post-hoc test. P-value less than
0.05 is considered significant.

4. Results

Our findings showed that the R1-hiPSC was well-
cultured on the MEF layer and had a proper phenotype.
The ATG5 gene expression level in several stages of cell dif-
ferentiation compared with undifferentiated hiPSC. As de-
scribed in previous reports, we examined the expression of
pluripotency and endoderm markers to confirm cell differ-
entiation. Our findings demonstrated that the cells were
successfully induced to differentiate into endoderm.

The mRNA expression of the ATG5 gene was examined
in iPSC, EB, mesendoderm (ME), and definitive endoderm
(DE) stages of differentiation (Figure 1). Our results showed
the low levels of ATG5 mRNA expression in iPS cells. The
maximum expression of the ATG5 was observed in the MEI
stage (compared with iPSC and other stages of differen-
tiation), and then the downregulated mRNA expression
level was detected. However, the high level of the ATG5 ex-
pression was found in all stages of differentiation rather
than iPSC. Therefore, the comparison of the ATG5 mRNA ex-
pression during differentiation indicated high levels of au-
tophagy in the MEI stage.

5. Discussion

Autophagy is a significant, self-degradative procedure
for the regulation of energy sources during development
and stress status (9). Autophagy also eliminates misfolded
or aggregated components and pathogens and clears dam-
aged organelles (10). This procedure acts at a basal level
in most tissues to maintain homeostasis. Moreover, au-
tophagy is known as a quality control mechanism for pro-
teins and organelles (11). It modulates several necessary cel-
lular processes, such as self-renewal, differentiation, senes-
cence, and apoptosis (12, 13). The role of autophagy in the
maintenance and differentiation processes of stem cells as
well as the generation of induced pluripotent have been
previously shown (14).
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Figure 1. The mRNA expression levels of ATG5gene in human iPSC during endoderm
induction. EB: embryoid body, ME: mesendoderm, DE: definitive endoderm.

Recent studies have demonstrated the conclusive role
of autophagy in the function and survival of pancreatic
beta cells (15). In vivo experiments showed that lack of au-
tophagy in mice caused beta-cell mass reduction and de-
creased insulin secretion, demonstrating the role of au-
tophagy in normal cell homeostasis (16, 17). Also, in vitro
and in vivo studies showed that the over-induction of au-
tophagy could reduce the function of cells (18). Moreover,
there are some published reports, implying the vital role
of autophagy during in vitro differentiation of stem cells
(19-21). The ATG5 protein is essential in the development
of early lymphocyte cells, the late activation of lympho-
cytes, and further plasma cell differentiation. According
to previous reports regarding the role of ATG5 in cell dif-
ferentiation, the autophagy genes status is a crucial sub-
ject in a pluripotent stem cell during several stages of dif-
ferentiation (22, 23). In the present study, we differenti-
ated hiPSC and analyzed the expression of ATG5 autophagy
marker gene during endoderm induction (iPSC, EB, MEI,
DEI 1, DEI 2, and DE). Our findings showed that autophagy
was activated at the definitive endoderm generation step
and reached a basic level during the last steps of differenti-
ation reported by Pantovic et al. (24).

ATG5 is one of the recognized standards to study au-
tophagic activity (25) and a significant mediator of au-
tophagosome formation (26). ATG5 and ATG7 are needed
to elongate and maturate the autophagosome. Imperfect
depletion of ATG proteins impaired autophagy, evident by
downregulation of LC3-II expression (27). The physiolog-
ical effect of autophagy in pancreatic beta cells was ex-

amined by Ebato et al. with the generation of the mice
with Atg7 deficiency. Their results showed that mice with
β-cell specific autophagy deficiency (Atg7f/f :RIP-Cre, Atg7-
deficient mice) showed impaired glucose tolerance with
abnormal β-cell morphology (28).

Masakazu Sugiyama et al. observed that ATG5 silencing
in Liver stem/progenitor cells reduced active LC3 and en-
hanced p62, showing autophagy inhibition and increased
hepatic differentiation in the stem/progenitor cells. In con-
trast, SQSTM1/p62 silencing impaired hepatic differentia-
tion (29).

Overall, our results demonstrated a time-dependent
autophagy-specific gene expression during endoderm in-
duction. We observed that the expression of the ATG5 (au-
tophagy gene marker) gene was in the highest levels dur-
ing the MEI stage. Determining the expression pattern of
autophagy genes could be used to alter autophagy proce-
dures and attain more efficient differentiation induction
tactics.

5.1. Conclusion

The current study described mRNA expression of ATG5
autophagy gene during different days of differentiation
(iPSC, EB, MEI, DE1, DE2, and DE). The results showed the de-
creased mRNA expression of ATG5 in the early stages of dif-
ferentiation (EB) and then increased at the MEI stage. Ac-
cording to the results, autophagy was involved during the
differentiation of iPSC and early stages of differentiation
rather than the later stages. Subsequent studies are needed
to find the precise role of autophagy in the differentiation
of iPSC and obtain more efficient tactics to differentiate hu-
man iPSC.
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