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Abstract

Background: Induced pluripotent stem cells (iPSCs) have the ability to proliferate indefinitely and differentiate into three germ
layers of ectoderm, mesoderm, and endoderm. Definitive induction is the first and the most delicate stage of differentiation of
various iPSC-derived organs. It has been found that the Wnt signaling pathway implicates in embryogenesis, organogenesis, and
cell communication.
Objectives: In the present study, we aimed to investigate the expression pattern of the Wnt5a gene as an indicator of non-canonical
Wnt signaling activity during definitive endoderm induction of iPSCs.
Methods: Human iPSCs (RSCB0042) were acquired from Royan stem cell bank of Royan Institute (Tehran, Iran). The iPSCs were
cultured on a feeder layer of mitomycin-inactivated mouse embryonic fibroblasts (MEF), and iPSC colonies were collected for em-
bryoid body (EB) generation by suspension culture method. Then endoderm induction step was performed using a series of small
molecules. The quantitative real-time PCR was used to assess the mRNA expression of wnt5a, Nanog, OCT4, SOX17, and FOXA2 genes.
Results: The production of efficient EBs confirmed by a decrease in Nanog and Oct4 gene expression and the success of DE (definite
endoderm) induction step was confirmed by a high expression level of DE specific genes, Sox17, and FoxA2. A significant upregulation
of Wnt5a in EB samples and a minor decrease at day 4 was observed. However, the differentiation process followed by an incremental
fashion in Wnt5a mRNA expression starting from day 4 of differentiation among the samples of days 6 and 8 (DE stage).
Conclusions: Our results suggest that Wnt5a is more activated at the later steps of endoderm induction rather than the early steps,
which may be due to the stimulation of canonical Wnt signaling. Finding the expression level of Wnt5a could rise insights for devel-
oping more efficient differentiation induction protocols.
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1. Background

The reprogramming techniques of somatic cells by the
introduction of pluripotency transcription factors led to
the generation of induced pluripotent stem cells (iPSCs).
Like embryonic stem cells, iPSCs have the ability to prolifer-
ate indefinitely and differentiate into three germ layers of
ectoderm, mesoderm, and endoderm (1). Definitive endo-
derm cells can be differentiated into internal organs such
as lungs, liver, pancreas, and thyroid (2). Therefore, defini-
tive induction is the first and the most delicate stage of dif-
ferentiation of various iPSC-derived organs. There are di-
verse signaling pathways involved in definitive endoderm
generation, including TGFβ, SHH, and Wnt pathways (3, 4).

Wnt signaling pathway comprises two different classes of
canonical and non-canonical Wnt pathways. Both are con-
trolled by a set of glycoprotein ligands, which are recog-
nized by their cognate cell surface receptors, Frizzled fam-
ily, and coreceptors of low-density-lipoprotein-related pro-
tein5/6 (LRP5/6). The attachment of Wnt ligands to frizzled
receptors leads to the activation of Dishevelled (Dvl) pro-
tein (5, 6). In canonical Wnt signaling, β-catenin plays the
central role, which is under constant degradation by a de-
structive complex, consist of, glycogen synthase kinase-3β
(GSK-3β), adenomatous polyposis coli (APC), casein-kinase
1α (CK1α), and Axin (6, 7). By induction of canonical Wnt
signaling by specific ligands such as Wnt3a, β-catenin is
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translocated into the nucleus and activates Tcf/Lef tran-
scription factors to initiate the expression of target genes
(8, 9). Non-canonical Wnt/planar cell polarity (PCP) signal-
ing is induced by different sets of ligands, such as Wnt4 and
Wnt5a (10, 11). The signal transduction cascade in Wnt/PCP
pathway is initiated independent of β-catenin, from Dvl to
secondary effectors, c-Jun N-terminal kinase (JNK), and the
small GTPases of Rho and Rac, which lead to cytoskeleton
rearrangement and activation of AP1 transcription factors
to alter gene expression (12).

Wnt signaling pathway has been established to be im-
plicated in embryogenesis, organogenesis, and cell com-
munication. However, canonical Wnt signaling is responsi-
ble for cell hemostasis and proliferation whereas, Wnt/PCP
is in favor of differentiation of stem cells into various types
of cell lineages such as adipocytes, osteocytes, and cardiac
cells (6, 13-17).

2. Objectives

This study was designed to investigate the expression
pattern of the Wnt5a gene as an indicator of non-canonical
Wnt signaling activity during definitive endoderm induc-
tion of iPSCs.

3. Methods

3.1. Cell Culture

The commercially available Human iPSCs (RSCB0042)
were purchased from Royan stem cell bank (Royan In-
stitute, Tehran, Iran). Briefly, iPSCs were cultured on a
feeder layer of mitomycin (M7949, Sigma, Germany) inac-
tivated mouse embryonic fibroblasts (MEF) incubated at
37°C, 5% CO2 and humidity of 80 - 90% (18). Dulbecco mod-
ified eagle medium (DMEM)/Ham’s F12 (Gibco, Life Tech-
nologies, USA) was used as the basic medium for iPSC
culture supplemented with 20% knockout serum replace-
ment (KOSR) (10828020, Gibco), 5µg/mL selenium, insulin-
transferrin-selenium (ITS) (I1884, Gibco), 100 Unit/mL peni-
cillin, 100 µg/mL streptomycin (P4333, Sigma-Aldrich), 0.1
mM non-essential amino acids (M7145, Sigma-Aldrich), 0.1
mM 2-mercaptoethanol (15433, Merck) and 12 ng/mL ba-
sic fibroblast growth factor (bFGF) (F0291, Sigma-Aldrich).
The culture media was exchanged every other day, until
iPSC colonies covered at least 70% of the culture flask sur-
face. Then iPSC colonies were collected for embryoid body
(EB) generation by suspension culture method (19). Sub-
sequently, iPSC colonies were detached from culture flask
by cell scraper and resuspended in ultra-low attachment
plates (SPL, Korea) with DMEM/ F12 medium supplemented

with 20% fetal bovine serum (FBS) (Gibco), 100 Unit/mL
penicillin, and 100 µg/mL streptomycin for three days.
Then, EBs were collected and cultured in six-well cell cul-
ture plates (SPL) coated with 2% gelatin (G1890, Sigma, Ger-
many) and kept for 3 days at 37°C, 5% CO2, and humid-
ity of 80 - 90%. The endoderm induction step was per-
formed using a series of small molecules based on our
previous researches (4). Therefore, the previous medium
is removed and EBs were cultured in RPMI1640 medium
(21875034, Gibco) containing 30 ng/mL of Activin A (H4666,
Sigma) and 3 µM CHIR99021 (SML1046, Sigma) without
serum supplement. Further CHIR99021 was removed from
the medium after 24 hours with a gradual increase in
serum supplement in the medium. Therefore, the next
day, the medium was replaced with a fresh one containing
0.2% KOSR and 30 ng/mL of Activin A. After 48 hours, the
medium was removed with the replacement of 2% KOSR
containing medium, which was continued for three days.
Cell samples were harvested for RNA extraction at days 0
(iPSC), 3 (EB), 4, 5, 6, and 8 (definitive endoderm).

3.2. Quantitative Real-time PCR

Collected cell samples were washed by Phosphate
buffered saline (PBS), and then total RNA was extracted by
RnaSol mRNA extraction kit (Alphabio, USA) according to
the manufacturer’s instruction. In order to prepare com-
plementary DNA (cDNA), PrimeScript First Strand cDNA
Synthesis Kit (6110A, Takara, Japan) was used with 500 ng
of total RNA. The quantitative real-time PCR was performed
by StepOnePlus instrument (Applied Biosystem, USA) and
SYBR® Premix EX TaqTM II kit (RR820A, Takara, Japan). The
unique forward and reverse primers for Wnt5a mRNA (se-
quences and melting temperatures are presented in Ta-
ble 1) were uniquely designed by AlleleID software (version
7.5). Amplification was performed in 10 µL aliquots with
10 pM of each primer. GAPDH gene was used as an internal
control for expression normalization. All reactions were
done in triplicate.

3.3. Statistical Analysis

Real-time data were analyzed by LinRegPCR software
(version 2017.1) to identify the highly efficient reactions
(95%105% and 0.99). Statistical analysis and fold changes
were calculated by GenEX software (v.7.0.2.164). The Fold
changes ratio was quantified against iPSC. One-way ANOVA
was used for the comparison between cell samples with
Tukey-Kramer’s for post hoc test. The P-value of less than
0.05 was considered statistically significant.

2 Gene Cell Tissue. 2021; 8(2):e110381.



Lorzadeh S et al.

Table 1. The Sequence of the Primers Used in This Study

Gene Name Sequence (5’ to 3’) Tm Product Length (BP)

Wnt familymember 5A (WNT5A)
F- GGATGGCTGGAAGTGCAATG 59.54

112
R- TTCATACCTAGCGACCACCA 58.14

GAPDH
F- GGACTCATGACCACAGTCCA

60 119
R- CCAGTAGAGGCAGGGATGAT

4. Results

4.1. Differentiation Induction

The success of the differentiation process was verified
by the assessment of specific marker genes. Initially, the
pluripotency characteristics of iPSCs were confirmed by
the observation of pluripotency marker genes, Nanog, and
Oct4 genes expression. Also, EBs were efficiently produced
from fully grown iPSC colonies and showed a decrease in
Nanog and Oct4 gene expression (0.175 ± 0.043; P < 0.001
and 0.213±00.053; P < 0.001 respectively). The significant
downregulation of Nanog and Oct4 genes during the rest
of the differentiation induction was the indicator of suc-
cessful escape from pluripotency (Figure 1A). The success
of DE induction step was confirmed by the assessment of
DE specific genes, including Sox17 and FoxA2. Both genes
showed elevated expression levels compared to iPSC (9.937
± 0.464; P < 0.001 and 209.615 ± 1.08; P < 0.001 respec-
tively) (Figure 1B).

4.2. Wnt5a Expression

As shown in Figure 2, the expression profile of Wnt5a
mRNA represents non-canonical Wnt signaling during the
differentiation induction process. We observed a signifi-
cant upregulation of Wnt5a in EB samples (5.033 ± 1.55; P
< 0.001). However, a minor decrease was observed on day
4 (3.715 ± 0.279; P < 0.001). The differentiation process fol-
lowed by an incremental fashion in Wnt5a mRNA expres-
sion started from day4 of differentiation (4.508±0.314; P <
0.001) among the samples of days 6 and 8 (DE stage) (6.9751
± 1.216; P < 0.001 and 7.709 ± 0.926 P < 0.001).

5. Discussion

The evolutionary conserved non-canonical Wnt signal-
ing is involved in development, cell proliferation, and dif-
ferentiation in coordination with canonical Wnt signaling
(12, 20). Wnt/PCP is a type of non-canonical Wnt signal-
ing, which is activated by the Wnt5a ligand is a well-known
antagonist of the canonical pathway (10, 21-23). Canoni-
cal Wnt signaling is mostly involved in cell proliferation

and stemness maintenance and only the early stages of dif-
ferentiation induction (13, 23). Therefore, Wnt/PCP should
be activated after the initial stage of endoderm induction.
In this study, we demonstrate the expression of the Wnt5a
gene is decreased at the early endoderm induction stage,
which is consistent with the introduction of canonical Wnt
signaling inducer, namely chir99021. However, during the
rest of the endoderm induction process, Wnt5a expression
ramped up. Therefore, the specific stage of Wnt5a expres-
sion, as non-canonical Wnt signaling, has a decisive role
during definitive endoderm induction and differentiation
toward different lineages such as the pancreas (3). Baksh
et al. have shown that Wnt5a can suppress the canonical
Wnt signaling pathway, which can promote the osteogenic
differentiation of MSCs (20) since canonical Wnt signal-
ing functions only at the early differentiation induction
as suggested by Paige et al. (24). In the same way, Vija-
yaragavan et al. reported that the non-canonical Wnt sig-
naling is required for the embryonic stem cells to escape
from pluripotency (25). Moreover, Wnt5a was shown to
promote the cardiac cells, dental papilla cells, chondro-
cyte, adipocyte, and osteogenic differentiation (15-17, 26,
27). Therefore, it can be postulated that Wnt/PCP is acti-
vated at the later steps of endoderm differentiation and
positively promotes the differentiation process. The study
of Wnt5a expression may provide new insights into devel-
oping more effective differentiation protocols considering
the fact that definitive endoderm induction is the initial
step for the generation of many internal organs and is the
most delicate step throughout the differentiation induc-
tion.

5.1. Conclusion

Non-canonical Wnt signaling contributes to develop-
mental pathways and differentiation. We studied the ex-
pression profile of the Wnt5a gene, during endoderm in-
duction and suggest that Wnt5a is more activated at the
later steps of endoderm induction rather than the early
step, which may be due to the stimulation of canonical Wnt
signaling. Understanding the expression pattern of Wnt5a
may provide insights into developing more efficient differ-
entiation induction protocols.
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Figure 1. Stage-specific differentiation marker genes; Fold change ratio of mRNA expression is presented on “Y” axis, while differentiation stages, including iPSCs, Embryoid
body (EB), day 4 of differentiation (day 4), day 5 of differentiation (day 5), and endoderm (day 8) are depicted on “X” axis. (A) The expression profile of pluripotency-specific
genes, Oct4 and Nanog, represents the successful scape form stemness at day 8 (endoderm stage). (B) The expression profile of endoderm marker genes, Sox17 and FoxA2,
represents the completion of endoderm induction. *P < 0.05; ** P < 0.01; *** P < 0.001; NS: not-significant.
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Figure 2. Expression profile of Wnt5a gene; The expression pattern of Wnt5a is pre-
sented by the fold change compared to the iPSCs on vertical axis at different stages of
differentiation induction on horizontal axis, including iPSCs, Embryoid body (EB),
day 4 of differentiation (day 4), day 5 of differentiation (day 5), day 6 of differenti-
ation (day 6), and endoderm (day 8). *P < 0.05; ** P < 0.01; *** P < 0.001; NS: not-
significant.
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