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Abstract

Background: Pregnancy is associated with oxidative stress that results in endoplasmic reticulum (ER) stress and unfolded protein
response (UPR). Prolonged-unalleviated ER stress causes the activation of the autophagy pathway via UPR. Expression of genes en-
coding glucose-regulated protein 78 (GRP78) and BECLIN1 are induced in UPR and autophagy.
Objectives: We studied the mRNA expression of the aforementioned genes in the liver and brain of Nulligravida versus saline and
ethanol-treated pregnant rats.
Methods: Control pregnant rats were orally treated with normal saline, and test animals received ethanol 250 mg/kg or resveratrol
120 mg/kg from day 1 to day 21 of gestation. Nulligravida rats treated by saline comprised the non-pregnant control group. On day
21, mRNAs encoding GRP78 and BECLIN1 were extracted from the liver and brain tissues and assessed using real-time PCR.
Results: Our results showed that the level of transcripts encoding GRP78 and BECLIN1 was higher in the liver of pregnant rats com-
pared to Nulligravida ones. Further, ethanol decreased the mRNA levels of GRP78 and BECLIN1 in the liver of pregnant rats, an effect
that was reversed by resveratrol. Levels of GRP78 transcripts were decreased, and those of BECLIN1 remained unchanged in the brain
of ethanol exposed pregnant rats.
Conclusions: Levels of mRNAs for GRP78 and BECLIN1 are up-regulated during pregnancy. These levels are reduced in the liver of
ethanol-treated rats, and resveratrol compensates these effects.
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1. Background

Pregnancy brings about adaptive changes in the
metabolism (1) and physiology of the female body (2).
These gestational changes may be associated with dis-
orders like pregnancy-associated liver disease observed
in 3% of pregnant women worldwide (3, 4). The higher
metabolic demand of the growing fetus and the increased
metabolic activity in placental mitochondria leads to
increased production of reactive oxygen species (ROS)
that puts the mother in a state of oxidative stress (5).

Previous studies have shown that ethanol (Eth) con-
sumption during pregnancy can increase ROS levels and
cause liver damage (6, 7). Eth induces both oxidative and
ER stress in the liver (8). The brain is another organ that

is most susceptible to Eth toxicity following its oxidation
(9). Chronic administration of Eth is reported to accom-
pany oxidative stress in the adult mouse brain (10).

Unfolded protein response (UPR), as a protective strat-
egy protecting cells against ER stress (11), works toward
the reduction of unfolded protein accumulation (12). UPR
activity involves the three signaling proteins, activating
transcription factor 6 (ATF6), protein kinase R (PKR)-like
endoplasmic reticulum kinase, and inositol-requiring en-
zyme 1 (IRE1) (13). The activation of these proteins occurs
upon detachment from an endoplasmic reticulum chap-
eron, GRP78/BiP (binding immunoglobulin protein), when
the accumulated unfolded proteins compete with the re-
ceptors attachment to GRP78 (14, 15). Neuronal death af-
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ter prolonged activation of UPR following ER stress has
been introduced as the mechanism of ethanol neurotoxi-
city (16).

Autophagy plays a protective role against oxidative
stress (17). Beclin1/ATG6 (autophagy-related gene 6) is a key
protein in the initiation of autophagy that directly inter-
acts with GRP78 leading to the formation of the BECLIN1-
Vps34-Vps15 complex and eventually triggering the au-
tophagy cascade (18). Autophagy is shown to be activated
by Eth exposure (19).

As a polyphenolic compound, resveratrol (RSV) is
found in various foods and drinks such as grapes, plums,
berries, peanuts, grape juice, and red wine (20). Numer-
ous beneficial health effects of RSV, such as preventing car-
diovascular diseases, diabetes, aging, neurodegenerative
complications, and cancer, have been discovered, where
RSV acts as a potent antioxidant (21). RSV has shown al-
leviating effects on fatty liver disease by introducing au-
tophagy in cellular and animal models of hepatic steatosis
(22, 23). Besides, long-term consumption of RSV is associ-
ated with protective effects on optic nerves via activation
of UPR pathway effector proteins, CHOP (CCAATenhancer-
binding protein homologous protein), and XBP-1 (X-box
binding protein 1) (24).

We have previously studied the brain effects of alcohol
consumption during pregnancy and have shown that Eth
decreased the expression of brain-derived neurotrophic
factor (BDNF) in the hippocampus of female rats, which
was reversed by RSV (25).

2. Objectives

Here, we have hypothesized that pregnancy affects the
basal mRNA expressions of genes for autophagy and UPR
and affects their response to Eth and RSV.

3. Methods

3.1. Rats

Twenty-four female Sprague-Dawley rats were pur-
chased from Shiraz University of Medical Sciences’ Animal
Laboratory with an average weight of 220 ± 20 g. Subjects
were kept in a controlled condition using a 12-hour light
and dark cycle. Six nulligravida female rats were randomly
selected as the non-pregnant control group. Other animals
mated and were examined for pregnancy. The detection
of the first vaginal plaque was an indication of pregnancy.
Pregnant rats were divided into three groups and treated
with normal saline (pregnant control group) and either

Eth or combined Eth and RSV as test groups (Table 1). The
doses are selected based on our results from previous stud-
ies (25, 26). Rats were gavaged by 200 µL of the daily treat-
ments for 20 days. At the end of the treatment period, rats
were euthanized in a CO2 chamber, and their brains and
livers were surgically removed, snap-frozen in liquid nitro-
gen, and stored at -80°C till the time of RNA extraction. Two
brain samples of each group were pooled. All experiments
were done in agreement with the animal ethics guideline
of Shiraz University of Medical Sciences and were approved
by the Vice-Chancellor for Research Affairs with grant num-
ber 91-6140.

3.2. Quantitative-reverse Transcription Polymerase Chain Reac-
tion (qRT-PCR)

RNA was extracted from 50 - 100 mg of tissues using Tri-
zol reagent (Invitrogen, CA, USA), following the manufac-
turer’s protocol. First-strand cDNA was synthesized from
RNA with reverse transcriptase Kit (Fermentas, Maryland,
USA). Quantitative analysis was carried out by Real-Time RT
PCR using the Power SYBR Green PCR Master Mix (Takara)
and Real-Time PCR System (Applied Biosystems 7500, Fos-
ter City, CA, USA). qRT-PCR was performed with 40 cycles
for amplification. We evaluated single-peak melting curves
as specific qRT-PCR reactions. Electrophoresis of qRT-PCR
products confirmed the accuracy of the molecular weight
of amplicons.

The primers of BECLIN1, GRP78, and ACTIN were de-
signed by AlleleID software (Table 2). The 2-∆∆Ct method
was used to evaluate the expression of genes.

3.3. Statistical Analysis

Nonparametric analysis of variance (Kruskal-Wallis
test) followed by Dunn’s post hoc analysis for multi-
ple comparisons was used to determine any significant
changes between groups. The significance level was set at P
< 0.05 for all tests. All analyses were conducted with Graph
Pad Prism statistical software (version 7; San Diego, CA).

4. Results

4.1. Pregnant Rats Express Higher Levels of Autophagy and UPR
Markers in Their Liver

As shown in Figure 1, BECLIN1 encoding mRNA levels
in the liver of pregnant rats treated with normal saline
were significantly higher compared to the non-pregnant
control group (Figure 1A, P-value < 0.001). Similar results
were observed for the expression level of GRP78 (Figure 1B,
P-value < 0.001).
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Table 1. Treatment Groupsa

Groups (No) Control (6) Control (6) Eth (6) RSV (6)

Treatment NS NS Eth 250 Eth 250, RSV 120

Pregnancy status Non-Preg Preg Preg Preg

Abbreviations: Eth, ethanol; No, number of rats; NS, normal saline; Preg, pregnant; RSV, resveratrol.
aUnit: mg/kg.BW.

Table 2. Primers Used for Real-time Analysis

Gene Accession Number Sense Sequence (5’ to 3’) Anti-sense Sequence (5’ to 3’) Product Size

ACTIN NM-031144.3 CCACACCCGCCACCAGTTCG CTAGGGCGGCCCACGATGGA 138

BECLIN1 NM-001034117.1 CCAATGTCTTCAATGCGACCTTC GGCAGCATTGATTTCATTCCAT 119

GRP78 NM-013083.2 GTTCTTGCCATTCAAGGTGG TGGTACAGTCACAACTGCATG 181

Beclin1

Non-Preg Preg Non-Preg Preg
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Figure 1. The levels of BECLIN1 and GRP78 transcripts in the liver of pregnant rats compared to the non-pregnant group. Data are presented as the fold of increase in the
expression of genes relative to that of the control non-pregnant group and are the mean and SEM of three samples. ***, P < 0.001

4.2. RSV Restored the Expression of Autophagy and UPR Markers
in the Liver of Pregnant Rats Exposed to Ethanol

Results of real-time RT-PCR showed that Eth 250
mg/kg.BW significantly decreased the expression levels of
BECLIN1 mRNA in the liver of pregnant rats compared to the
normal saline group (Figure 2A, P-value < 0.05). However,
RSV 120 mg/kg.BW reversed the ethanol-induced decrease
in the mRNA levels of BECLIN1. Likewise, the expression lev-
els of GRP78 mRNA significantly decreased in response to
Eth 250 mg/kg.BW in the liver of pregnant rats compared
to pregnant control rats (Figure 2B, P-value < 0.05). Addi-
tion of RSV 120 mg/kg.BW to Eth could effectively increase
the expression of GRP78 to the level of normal saline receiv-

ing pregnant rats.

4.3. RSV Increased the Expression Level of the UPR Marker in the
Brain of Pregnant Rats with no Significant Effect on the Expres-
sion of the Autophagy Marker

Results of Real-time RT-PCR showed that Eth 250
mg/kg.BW alone or combined with RSV 120 mg/kg had
no significant effects on the mRNA expression of the BE-
CLIN1 in the brain of pregnant rats compared to the saline-
treated pregnant rats. (Figure 3A). However, in response to
oral Eth 250 mg/kg.BW, the expression levels of the GRP78
mRNA, significantly decreased in the brain of pregnant
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Figure 2. Levels of BECLIN1 and GRP78 transcripts in the liver of pregnant rats treated with Eth alone or combined with RSV. Control pregnant rats were treated with normal
saline. Data are presented as the fold of increase in the mRNA level in the treatment groups to that in the pregnant control group. Data are mean and SEM (n = 3). *, significance
at P < 0.05 (Dunn’s test).

rats compared to saline-treated pregnant rats (Figure 3B, P-
value < 0.0001). Addition of RSV 120 mg/kg.BW to Eth leads
to an increase in the mRNA expression of GRP78 compare to
saline receiving pregnant rats (Figure 3B, P-value < 0.05).

5. Discussion

The present study revealed increased levels of mRNAs
encoding GRP78 and/or Beclin-1 in the liver of pregnant
rats.

GRP78 is a negative regulator of UPR and a strong in-
hibitor of apoptosis (27). GRP78 has an ER stress response
element in the promoter of its gene. Thus, GRP78 is shown
to be a marker and regulator of ER stress (28). It is estab-
lished that pregnancy is associated with ER stress in the
placenta and reproductive systems due to induced oxida-
tive stress (29). However, this pregnancy-related oxidative
situation on other organs like the liver and brain is not ap-
parent yet. Our results revealed an up-regulation of GRP78
expression in pregnant rats’ liver, possibly as a protective
function of the liver in stress conditions.

In this study, we have also shown that the expression
levels of BECLIN1 were increased in the liver during preg-
nancy. Pregnancy is associated with increased levels of
ROS, and autophagy is triggered by oxidative stress (30).
Therefore, the overexpression of the BECLIN1 gene as an au-
tophagy marker in the liver of pregnant rats can be inter-
preted as a defense mechanism against ROS’s gestational
overload, which prevents liver injury and reduces oxida-
tive stress through autophagic activity. Autophagy has also
been shown in humans’ first trimester placental villi, a
finding that suggests a pro-survival role for autophagy dur-
ing pregnancy (31).

Previous studies have suggested that acute Eth expo-
sure induces autophagy in the liver through its reactive
metabolites (32). We have demonstrated a decrease in
the expression levels of BECLIN1 upon chronic exposure
of pregnant rats to Eth. In line with our results, Chao et
al. reported that impaired transcription factor EB (TFEB) -
mediated autophagy promoted the liver injury caused by
chronic ethanol intake in mice. Autophagy is also shown
to protect hepatocytes from adverse effects of acute alco-
hol exposure by removing lipid droplets and damaged mi-
tochondria (32). Therefore, lower levels of BECLIN1 we ob-
served in the liver of pregnant rats exposed to chronic Eth
are conceivable to decrease autophagic activity and predis-
pose the tissue to injury.

Despite the effect on the liver, Eth failed to decrease the
expression of BECLIN1 in the brain samples from our preg-
nant rats. This finding may be explained by the high basal
level of autophagic activity reported in cells with neuronal
origin (33).

Recent studies have introduced RSV as an inducer of
autophagy. Other investigators have shown that benefi-
cial effects of RSV on the hepatic lipid accumulation in-
duced by ethanol or by high-fat high-sucrose diet associ-
ated with the elevated levels of BECLIN1 and the activation
of autophagy (22, 23). In line with these studies, our re-
sults have shown that RSV 120 mg/kg.BW tended to reverse
the decreased expression of BECLIN1 in the Eth treated preg-
nant rats.

In 2018, Li et al. (34) reported that Eth exposure dur-
ing pregnancy increased the expression of GRP78 and other
ER stress markers such as IRE1α and ATF4 (Activating Tran-
scription Factor 4) in the brain of four-day-old offsprings.
However, our results demonstrated decreased GRP78 tran-
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Figure 3. Levels of BECLIN1 and GRP78 transcripts in the brain of pregnant rats. Data are presented as the fold increase in the mRNA level in the treatment groups compared to
the control group. Data are presented as the mean and standard error of the mean (SEM). *, P < 0.05, ***, P < 0.001.

scripts in the brain of pregnant rats chronically exposed
to ethanol. RSV has shown ameliorating effects on the ER
stress induced by free fatty acid in HepG2 cells (35). Further,
Gaballah et al. (36), in a rat model of rotenone-induced
Parkinson’s disease, showed that RSV alleviated ER stress
by decreasing the expression of CHOP and GRP78. Despite
these findings, our results revealed that RSV recovered the
reduced expression of GRP78 partially in the liver and fully
in the brain of Eth-treated pregnant rats. The discrepancy
between our results and those of other researchers may be
attributed to the physiological and metabolic situations
in pregnancy, as we have observed a higher basal level of
GRP78 expression in the liver of pregnant rats compared
to the non-pregnant group. Alternatively, the discrepancy
may be due to the effect of RSV on decreasing the oxidative
injury via the activation of TFEB and subsequent induction
of autophagy as has been shown in endothelial cells (37).

This study is limited by evaluating the effect of preg-
nancy on autophagy and UPR marker to the transcriptome
level. These observations need to be confirmed by evaluat-
ing the protein level of these markers.

5.1. Conclusions

Here, for the first time, we have disclosed that the basal
mRNA levels of autophagy and UPR marker are higher in
the liver of pregnant rats compared to non-pregnant ones.
Further, we have shown that chronic consumption of Eth
disturbs the pregnant levels of these markers and that RSV
could recover them.
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