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Abstract

Context: Neurodegenerative diseases (NDs) are neurological disorders characterized by the degeneration of the central nervous
system (CNS). Studies have examined interactions between long non-coding RNAs (lncRNAs) and functioning of the CNS in NDs. In
this study, we summarized the role of different lncRNAs in most NDs.
Methods: In this study, different papers published between years 2003 and 2020 were reviewed.
Results: LncRNAs can play a significant role in the development of brain disorders.
Conclusions: The dysregulation of lncRNAs has been shown to affect NDs such as Alzheimer’s disease (AD) and Parkinson’s diseases
(PD). In this review, we compiled recent findings related to the main lncRNAs associated with brain disorders.
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1. Context

Similar to messenger RNA (mRNA), by using RNA
polymerase II, lncRNA is transcribed (1) with or with-
out polyadenylation, alternative cleavage, polyadenyla-
tion, and splicing, leading to divergent isoforms from the
same locus (1, 2). Researchers have paid attention to long
non-coding RNAs (lncRNAs) perform important functions
in biologic pathways, such as epigenetic regulation, tran-
scription of genes, transport of proteins, cell division, de-
velopment of organs, cell replication, and chromosome dy-
namics (3, 4). Studies have shown that lncRNAs’ dysreg-
ulation is associated with the evolution of multiple neu-
rological disorders (4, 5). Nonetheless, in biological pro-
cesses or diseases, many lncRNAs have general features, in-
cluding structure, gene expression control functions, and
molecule mechanisms (4, 6). We have compiled recent
findings related to the main lncRNAs associated with neu-
rological disorders.

1.1. Characteristics of Long Non-coding RNAs (LncRNAs)

Studies have indicated that lncRNAs from the Gencode
v7 catalogue are produced in the same way as protein-
coding genes when evaluating lncRNAs, although they dis-
play a pronounced bias towards two exon transcripts and

are predominantly located at relatively low levels in chro-
matin and nucleus (7-10). LncRNAs are protected by a sec-
ondary structure, and they are thought to be evolved from
different evolutionary pathways (11). They may be in posi-
tions other than the common shared elements, and just a
few (~ 15%) lncRNAs display substantial sequence resem-
blance to other lncRNAs or protein-coding genes. Novel
lncRNAs are derived from non-exonic de novo sequences or
transposable elements rather than duplication (12). They
have certain similar and common characteristics (1) lncR-
NAs transcribed with RNA polymerase II; (2) are loosely
maintained at the sequence level and have a compara-
tively low level of expression and a pattern that is far more
unique to cell tissue; (3) lncRNAs are controlled by tran-
scriptional regulators (13).

1.2. Functions of LncRNAs

LncRNAs are well known for their involvement in
the regulation of genes and genomic activity at differ-
ent levels, including transcriptional, post-transcriptional,
and translational. LncRNAs regulate the activity of genes
through the cis mechanism that controls the activity of
nearby genes and the ƒ mechanism that controls the ac-
tivity of distant genes across the genome (14). In the lat-
ter case, for instance, telomeric repeat-containing RNA
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(TERRA) molecules arising from chromosome ends can reg-
ulate innate immune genes such as ISG15 in vivo through
the impact of telomere location over long distance (TPE-
OLD) (15). Inside the nucleus, multiple lncRNAs are sit-
uated where they can perform their critical functions
through different mechanisms such as scaffolds and sig-
naling (16).

2. Evidence Acquisition

This evaluation was compiled from different English
papers retrieved from Elsevier, PubMed, and Google
Scholar databases. The papers were searched using the
following keywords: “brain disorders”, “ASDs”, “neurode-
generative diseases”, “nervous system”, and “lncRNAs”.
Additional papers were recognized through screening the
reference lists of relevant papers.

3. Results

The accumulated data shows that lncRNAs are involved
in brain disorders. They may be used as molecular symp-
toms for cancer detection and drug projects for the treat-
ment of nervous system diseases.

3.1. LncRNA General Functions in Brain

It has been shown that about 40% of lncRNAs are ex-
pressed directly in the brain (4000 - 20,000 lncRNAs).
These brain-specific lncRNAs display the greatest signs
of conservation of evolution compared to other tissues,
which is a hallmark of functionality (7). Studies have
shown that brain-expressed lncRNAs are enriched in pre-
dicted, maintained RNA structures and are more likely to
have preserved functions (17). LncRNAs are shown to be
expressed in a more cell-type particular way compare to
protein-coding genes.

In general, 806 of 5195 lncRNAs have differential ex-
pressions across neuronal forms in transcriptome experi-
ments on cortical pyramidal neurons, indicating their role
in cell identity specification and conservation (18). Tran-
scriptome analyses have shown that specific lncRNAs are
expressed differently in the course of time and/or during
development and adulthood in brain areas such as the
hippocamp and cortex (19). Their preferable proximity to
brain protein-encoding genes that are involved in tran-
scriptional regulation or nervous system development is
another trait of brain-specific lncRNAs (17).

Given the nature and complexity of the central nervous
system (CNS) of mammals, the brain can be used as the
biggest source of lncRNAs relative to other somatic tissues.

The specificity of these lncRNAs in tissues and cells con-
tributes to the fate of the cell, ancestry determination, and
preservation of the cells during the mammalian brain for-
mation. The bulk of lncRNAs are found in the nucleus and
can perform their regulatory roles through communicat-
ing with chromatin-modifying complexes as scaffolds for
chromatin modifiers or by binding to transcription factors
as transcriptional co-regulators (Figure 1) (20).

3.1.1. Molecular Mechanisms of LncRNAs in Developing Central
Nervous System (CNS)

Animal studies have demonstrated many of the lncR-
NAs’ functions, some of which are related to the CNS. LncR-
NAs, from early neural development to end-stage synaptic
activity, play a crucial role in CNS development (21). It is
known that balance between excitation and inhibition in
the brain’s neural circuits is crucial to have a healthy con-
dition. A well-known lncRNA is MALAT1 that is committed
to regulating neurite growth. MALAT1 is found in several
tissues; however, it is concentrated in nerve cells. MALAT1
can successfully recruit SR-family splicing proteins at tran-
scription sites to start regulating synaptogenesis associ-
ated gene expression. MALAT1s knockdown results in re-
duced synaptic density (22).

3.1.2. LncRNA-Neuronal Disorders

More than 19000 lncRNAs play critical roles in multiple
complex human diseases (23). The dysregulation of these
lncRNAs has been shown to be correlated with the develop-
ment of several different disorders such as Alzheimer’s dis-
ease (AD) (24). LncRNAs contribute to the pathogenesis of
these diseases in various ways, from controlling transcrip-
tion to modulating and translating RNAs.

3.1.3. Alzheimer’s Disease Pathology

Alzheimer’s disease is one of the most prevalent neu-
rodegenerative disorders linked to aging that is character-
ized by the extracellular and intracellular tau protein and
amyloid beta (Aβ) aggregation, respectively, as well as loss
of synapses and neurons (25). Studies have confirmed the
regulatory effect of lncRNAs in AD. For instance, a research
showed that brain’s expression of lncRNAs is downregu-
lated during AD (26).

3.1.4. BACE1-AS LncRNA

The antisense transcript of BACE1-AS, a conserved non-
coding RNA derived from the reverse direction of the BACE1
locus on chromosome 11, has been strongly correlated with
AD severity in both humans and transgenic mice (24, 27,
28). BACE1-AS controls BACE1 expression positively (29).
Modarresi et al. showed that by knocking down BACE1-AS,
the Aβ production and plaque deposition decreased, while
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Figure 1. LncRNAs have been best identified at different stages for their role in controlling gene and genome function. LncRNAs theory mechanisms for gene and genome
activity regulation. A, lncRNAs in the nucleus operate in transcriptional regulation by interacting with chromatin-modifying complexes or transcription factors; B, cytoplasmic
lncRNAs usually function as RNA processing regulators, such as RNA editing, alternative splicing and miRNA-mediated mRNA expression.

neurogenesis markers increased. They concluded that this
process occurs very early in amyloid pathogenesis and can
serve as a therapeutic target/ or as an early biomarker.

According to the results of the study by Li, in APPsw
transgenic cells, BACE1-AS mediates BACE1 expression and
Aβ production upon addition of cell stressors, such as Aβ1-
42. This result suggests that BACE1-AS can play a critical
role in the progression of AD. In an attempt to determine

whether BACE1-AS can be used as a blood-based biomarker
in AD patients, Fotouhi et al. exhibited that plasma can
serve as a potential source for BACE1-AS extraction and
could be used as a potent biomarker of AD (30). In a con-
tinuing attempt to recover BACE1-AS additional roles, a new
study by Xia et al. exhibited that BACE1-AS knockdown by
siRNA in SAMP8 mice causes an increase in the prolifera-
tion of primary hippocampal neurons, which in turn, leads

Gene Cell Tissue. 2021; 8(3):e111802. 3



Abdolmaleki A et al.

to improvements in memory and learning behaviors. They
also found that following the depletion of BACE1-AS, BACE1,
and APP protein production and tau phosphorylation are
reduced in the hippocampus (31).

3.1.5. NAT-Rad18

The possible functions of NAT-Rad18, a natural tran-
scription of antisense targeting Rad18 (a protein for DNA
repair encoding gene), in the DNA repair mechanism for
AD have been investigated. NAT-Rad18 has a widespread
distribution in the brain of adult rats, with the highest ex-
pression in the cerebellum and cortex (32, 33). After expo-
sure to Aβ, NAT-Rad18 was expressed in particular brain re-
gions.

3.2. Schizophrenia (SZ)

Schizophrenia (SZ) is one of the most severe psychi-
atric illnesses diagnosed between the ages of 18 and 25
years for men and 25 and 35 years for women (34). Indi-
viduals with SZ have an abnormal perception of the real-
ity, which may lead to a combination of hallucinations and
disordered thinking and behaviors that affect their every-
day functions. Numerous experiments have shown that
non-coding RNAs are dysregulated in the CNS of these pa-
tients. This finding opens up new avenues to understand-
ing the underlying molecular mechanism of neurodevel-
opmental disorders such as SZ (35).

3.2.1. HOXA Transcript Antisense RNA 2 (HOXA-AS2)

HOXA-AS2 interacts with Zeste homolog 2 enhancers
(EZH2). EZH2 assumes a crucial function in the epigenetic
silencing of cyclooxygenase-235, an enzyme that has been
shown to be over expressed in SZ due to immune reaction
dysregulation. An increase in EZH2 rate in the anterior cin-
gulate cortex of SZ patients was found in RNA-seq data anal-
ysis. Such a function could be exercised by intervention in
the natural developing brain (36, 37).

3.3. Epilepsy-LncRNAs

One of the most prominent neurodegenerative dis-
orders marked by irregular electrical activity in the ner-
vous system is epilepsy, which influences about 1% of
the world’s population (38-40). The function of lncRNAs
has been explored in experimental animal epilepsy mod-
els. Scholars have found hundreds of lnRNAs expressed
differently when comparing nervous tissue regulation in
mice. Of those lncRNAs that were expressed differently,
54 (for pilocarpine) and 14 (for kainic acid) were simi-
lar to protein-coding genes, and it seems to cause major
gene expression changes; thus, the potential Cis impact of
these lncRNAs is indicated (41). LncRNAs function in Cis,

silencing, or strengthening proximal gene expression on
the same chromosome (42). Evidence suggests lncRNA-
UCA1 suppressed hippocampal astrocyte activation and
JAK/STAT/GLAST expression in the rat models of temporal
lobe epilepsy and improved adverse epileptic reaction (43).
In the hippocampus and cortex, lncRNAs were dysregu-
lated in a pilocarpine mouse model. The potential clinical
targets for chronic epilepsy epigenetic modulation may be
dysregulated lncRNAs with co-dysregulated mRNAs (44).
Another study showed that lncRNA NEAT1 affected epilepsy
inflammatory response by suppressing miR-129-5p and by
further controlling Notch’s signaling pathway in the IL-1β-
induced cell model (45).

3.3.1. Brain-derived Antisense RNA Neurotrophic Factor (BDNF-
AS)

Brain-derived antisense RNA neurotrophic factor
(BDNF-AS) is an lncRNA transcribed from the opposite
neurotrophic factor originating from the brain. The hip-
pocamp in animal studies of epilepsy was significantly
upregulated by BDNF mRNA and protein (38, 46). In the
case of epilepsy, an investigation demonstrated that BDNF
expression was up-regulated when the human neocortex
is removed. In contrast, BDNF-AS was down-regulated
following neocortex taking out. Such evidence indicates
that the relationship between mRNA an lncRNA might
reflect a human brain ability to change and adapt new
states, and a possible therapeutic strategy for epilepsy
could be used to inhibit BDNF pathways (38, 47).

3.4. Autism Spectrum Disorders (ASDs) -LncRNAs

The category of common neurodevelopmental disor-
ders marked by disrupted social interaction and speech
and restricted or repetitive actions or interests is autism
spectrum disorders (ASDs) (48, 49). ASDs, clinically and eti-
ologically, are complex and heterogeneous.

The involvement of lncRNAs in neurogenesis and
GABAergic transmission suggests their potential role in
ASDs pathogenesis. The expression of three lncRNAs in ASD
patients’ peripheral blood, namely p21-associated ncRNA
DNA damage-enabled (PANDA), nuclear paraspeckle as-
sembly transcript 1 (NEAT1), and taurine-upregulated gene
1 (TUG1), was assessed and compared with that of healthy
subjects to establish peripheral biomarkers or targeted
therapies for ASDs. In cellular apoptosis, the selection jus-
tification for these lncRNAs was their regulatory function.
In ASD patients, the essential up-regulation of NEAT1 and
TUG1 was observed (50).

3.4.1. NEAT1 RNA

NEAT1 RNA is preserved completely parallel to the
paraspeckles in nuclei in foci. Such subcellular organiza-
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tions are active in the nuclear processing of mRNAs. NEAT1
RNA interacts with the proteins of paraspeckles and seems
to serve an important function in controlling the quantity
of paraspeckles in proteins. By increasing miR-497 expres-
sion in the retina, NEAT1 was shown to control BDNF expres-
sion (5). Peripheral BDNF level in ASD patients has been
shown to be considerably greater, which suggests the role
of BDNF in ASDs’ pathogenesis. Elevated levels of NEAT1
could be involved in ASD pathogenesis via miR497/BDNF
pathways (50).

3.4.2. TUG1

TUG1 was among lncRNAs having differential spa-
tiotemporal expression in brain regions. In adult’s brain,
the TUG1 gene was expressed by wide range of neocortex
cells.

Researchers have assessed the upregulation of multi-
ple nearby genes in the brain tissues of Tug1 knocked-out
mice, which suggests this lncRNA’s Cis-acting role in con-
trolling the expression of genes. This lncRNA in the course
of an ischemic stroke changes cell apoptosis, inflamma-
tion, and angiogenesis. TUG1 has inhibitory effects on miR-
9, an evolutionary retained miRNA associated with animal
behavioral deficits. The abnormal TUG1 expression in ASD
patients could be involved in ASD pathogenesis by the al-
teration of the expression of miR-9, and subsequently, mul-
tiple mRNAs are affected by this miRNA.

3.5. PD-LncRNA

The second most prevalent neurodegenerative disease
that affects about 1 - 2% of the population over 65 years of
age is Parkinson’s disease (PD). Non-motor signs, such as
mood disturbances and panic, are often associated with
motor signs including tremor, rigidity, and bradykinesia in
PD patients (51, 52).

3.5.1. Uchl1-AS

Uchl1-AS is a nuclear lncRNA that is transcribed from
the opposite strand to mouse ubiquitin carboxy-terminal
hydrolase L1 gene. Uchl1 is a neuron-restrained protein
that acts as a de-ubiquitinating enzyme and stabilizer of
monoubiquitin. Uchl1 gene mutations were found to be
linked to familial PD. Parkinson’s disease has confirmed
Uchl1 protein oxidative inactivation (53). Uchl1-AS im-
proves Uchl1 protein synthesis at the post-transcription
stage, which relies on combined two-domain operations in
the 5’ antisense area that gives the specificity of the sensory
target gene embedded repetitive element SINEB2 (short in-
terspersed, nuclear factor subclass B3), which affords a pro-
tein synthesis activation domain (54, 55). Uchl1-AS activity
is controlled via signaling. Uchl1 mRNA is mostly located

in the cytosol, although Uchl1-AS is common in the nucleus
of the dopaminergic neuron. MTOR suppressor-rapamycin
therapy results in the recruitment of Uchl1 protein from
the nucleus to the cytoplasm by the combination of Uchl1-
AS. For developing parkinson’s disease, the relationship be-
tween Uchl1 and ncRNAmTOR could be critical (55, 56).

3.6. Brain Cancers-LncRNAs

Several studies have established cancer-related lncR-
NAs (57, 58). It has been shown that they are exact p53 tar-
gets, including PINT, TUG1, PANDA, and linc-p21 (59, 60).

3.6.1. ANRIL’s LncRNA

ANRIL’s LncRNA is active in the tumor of the melanoma
neural system and interacts with PRC2 to epigenetically
suppress the p15 tumor silencer (61).

3.6.2. LncRNA CRNDE

In gliomas a strong upregulation of the lncRNA col-
orectal neoplasia differentially expressed (CRNDE) (62) and
neuronal differentiation in induced pluripotent stem cells
(iPSCs) occurs (63). The lncRNA gene MEG3 is a brain-
specific inhibitor that suppresses cell growth and induces
apoptosis controlled by p53; however, it is not present in
pituitary tumors (64, 65) and meningiomas (66).

3.7. Multiple Sclerosis (MS)-LncRNA

Multiple sclerosis is an intense inflammatory disease
that results in neuron sheath demyelination in the CNS
(67). LncRNAs are active in MS development and control
the distinction between B cells and CD4+ T-helper cells.
BDNF plays an essential function in neuronal security as a
growth-promoting gene. In an MS patient, microglia, as-
trocytes, and T cells have been shown to produce BDNF.

3.7.1. There Is an Important Interaction Between BDNF-AS as an
LncRNA and BDNF

BDNF-AS functioning as lncRNA has been shown to in-
hibit BDNF in cells; also, it has functions as a negative BDNF
regulator.

3.7.2. Growth Arrest Specific 5 (GAS5) Is Known as an LncRNA
Active in Suppressing Glucocorticoid Receptors in MS Patients

In the immune system, glucocorticoids perform a sig-
nificant function that may be viewed as a possible thera-
peutic agent for autoimmune diseases (68).
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4. Conclusions

LncRNAs play a significant role in the development of
brain disorders. The proof of lncRNAs’ association with
brain disorders is mostly attributed to variations in expres-
sion. Research in the field of lncRNA has shown that the
assessment of lncRNA expression levels in most common
brain disorders can be used as a diagnostic and prognostic
biomarker.
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