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Abstract

Background: Bone tissue engineering aims to heal bone defects that do not repair on their own. To construct an implantable os-
teogenic implant in tissue engineering, cells and bioactive molecules are seeded onto three-dimensional (3D) biomaterial scaffolds.
Objectives: The aim of this study was to provide an appropriate micro-environment for hUC-MSCs attachment and proliferation
over a biocompatible and non-toxic nanofibrous scaffold in order to differentiate into osteoblast cells.
Methods: In this work, a poly(vinylalcohol)/gelatin (PVA/GE) nanocomposite scaffold was prepared using the electrospinning
method. Glutaraldehyde/methanol was used as the treating medium to prevent the rapid dissolution of the PVA/GE scaffold in a
physiological fluid. The chemical, physical, and morphological characterizations of the prepared scaffold were evaluated by Fourier
transform infrared (FT-IR) spectroscopy, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM), respectively.
In addition, the porosity, swelling ratio, pH changes, degradation profiles, and hydrophobic-hydrophilic nature of the scaffold were
investigated. Biocompatibility of the scaffold was evaluated by using MTT assay. Finally, under osteogenic conditions, the differenti-
ation potential of the human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) cultured on the crosslinked scaffold was
assessed for 21 days.
Results: The obtained results demonstrated that crosslinking treatment changed water solubility of the PVA/GE scaffold. Also, addi-
tional investigations showed good biocompatibility, non-toxic nature, and appropriate degradation rate of the crosslinked scaffold
in comparison with the control group.
Conclusions: The results indicated that the PVA/GE crosslinked scaffold with good biocompatibility, non-toxic nature, and appro-
priate degradation rate can be used for bone tissue engineering aims.

Keywords: Electrospinning, Poly (vinylalcohol)/Gelatin, Nanofibrous Scaffold, Human Umbilical Cord Mesenchymal Stem Cells,
Bone Tissue Engineering

1. Background

Tissue engineering aims to develop biological substi-

tutes that replace, restore, and maintain diseased or dam-

aged tissues (1, 2). The three critical materials in the field

of tissue engineering are cells, soluble signaling factors,

and scaffolds. One of the main challenges in tissue en-

gineering is fabricating and designing suitable scaffolds

(3). Scaffolds play an essential role in tissue repair and re-

generation by acting as a three-dimensional (3D) support

structure that promotes cell adhesion, migration, differen-

tiation, and proliferation until the tissues are completely

restored (4, 5). The ideal scaffold should mimic the na-

tive extracellular matrix (ECM) to provide a suitable envi-

ronment to chemically inform or physically guide cell re-

sponse, and consequently, promote new tissue formation

(6, 7). In this regard, a simple, flexible, and inexpensive

method for preparing nanofibrous scaffolds is electrospin-

ning (8).

The unique potential of scaffolds to mimic the struc-

ture and biological functions of natural ECM at the
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nanometer scale is one of the main advantages of using

the electrospinning technique (9). Electrospun scaffolds

can provide an appropriate environment for cellular mor-

phogenesis and development due to their similarity to

the fibrous structure of natural ECMs (10, 11). Different

natural and synthetic polymers have passed the electro-

spinning process as bio-mimetic and temporal substrates

(12). An essential step in the success of tissue regenera-

tion is choosing the desired biomaterials for scaffold en-

gineering (13). Moreover, key requirements in the selec-

tion of biomaterials for scaffold fabrication are biodegrad-

ability and biocompatibility. The scaffolds that are fabri-

cated with biodegradable polymers can be absorbed by the

surrounding tissues, and no additional surgery is required

to eliminate them from the biological environment of the

human body (14-16). The preparation of tissue engineer-

ing scaffolds is done by electrospinning of gelatin with

poly(vinylalcohol) (PVA). Due to having a simple chemical

structure and containing numerous polar alcohol groups,

PVA is recognized as a hydrophilic polymer. Its unique me-

chanical properties have made it a biodegradable material

widely used in tissue engineering (17, 18).

Natural polymers, such as gelatin which is derived

from collagen, are also broadly used in tissue engineer-

ing. Due to its biocompatibility and ability to provide

a better environment for cell growth and attachment,

gelatin can be used as a scaffold material for substitut-

ing a natural ECM (19). Other excellent characteristics of

gelatin include low antigenicity, bio-affinity, hydrophilic-

ity, and biodegradability (20). Composite fibrous scaffolds

containing both natural polymers for cellular attachment

and synthetic polymers for mechanical support help im-

prove scaffold properties, including biocompatibility and

biodegradation (21, 22).

2. Objectives

The purpose of this study was to provide an appro-

priate micro-environment for the adhesion and prolif-

eration of hUC-MSCs over the glutaraldehyde/methanol

crosslinked PVA/GE nanofibrous scaffold to be differenti-

ated into osteoblast cells.

3. Methods

3.1. Materials

In the supporting information, a detailed description

of the materials used in this study is provided.

3.2. Instruments

Please refer to supporting information to see the in-

strumentation details.

3.3. Fabrication of Crosslinked PVA/GE Electrospun Scaffold

The PVA/GE scaffolds were fabricated using the electro-

spinning process, and then they were crosslinked by GA in

two steps (for more details, see supporting information).

3.4. Contact Angle Test

The experimental method for determining the contact

angle of the prepared scaffolds is described in the support-

ing data.

3.5. Isolation of hUC-MSCs from Umbilical Cord Wharton’s Jelly,

Cell Culture, Differentiation, and MTT Assay

A full description, including the isolation of hUC-MSCs

from umbilical cord Wharton’s Jelly, cell culture, differen-

tiation, and MTT assay, is provided in the supporting data.

3.6. Degradation Measurements and Swelling Test of PVA/GE

Nanofibrous Scaffold

Some physicochemical features of crosslinked PVA/GE

scaffold are evaluated by degradation, pH changes, and

swelling tests (see supporting information for more de-

tails).

4. Results

4.1. Morphological Study of PVA/GE Nanofibrous Scaffolds

Scanning electron microscopy micrographs at

30000× magnification were used to evaluate the mor-

phology of PVA/GE scaffolds in three different situations

(Figure 1A, C, and E). The obtained images indicated

the PVA/GE 50:50 nanocomposite was formed with in-

terconnected pores and random orientation. Further

investigation was carried out by Image J software, which

shows the diameter of nanofibers and porosity percent-

age of scaffolds (Figure 1B, D, and F). Before crosslinking,

the PVA/GE diameter was in the 80-90 nm range, and

the porosity percentage was 39.5% (Figure 1A and B). We

performed two steps of crosslinking to the water-soluble

property of the scaffolds to be useful for the bone tissue

engineering application. Hence, we treated scaffolds on

GA vapor (20%) for 24 h in the first step of crosslinking.

The treatment relatively stabilized the scaffolds against

water dissolution, but fiber diameter and porosity per-

centage did not change significantly (Figure 1C and D).
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The GA/methanol-treated scaffolds were stabled in buffer

solution, and their water resistance properties was sig-

nificantly enhanced. It was observed that the porosity

percentage of the scaffolds was 27.5% (Figure 1E and F).

The porosity of the crosslinked scaffold by GA/methanol

decreased. However, these crosslinked nanocomposite

scaffolds had a good surface to volume ratio, which is

beneficial for hUC-MSCs proliferation and migration.

4.2. FT-IR and TGA Analysis

Fourier-transform infrared spectroscopy (FT-IR) spec-

tra are known as valuable tools to identify the pres-

ence of specific functional groups or chemical bonds in

a compound of interest. Appendix 1A in the Supple-

mentary File shows the FT-IR spectra of PVA, gelatin, and

crosslinked PVA/GE fibrous scaffolds (see supporting in-

formation for more details). The TGA curves of the PVA,

gelatin, crosslinked PVA/GE, and non-crosslinked PVA/GE

nanocomposites are presented in Appendix 1B in Supple-

mentary File (see supporting information for more de-

tails).

4.3. Contact Angle Measurement

The results of wettability studies are described in the

supporting data.

4.4. Degradation Test, pH Changes, and Swelling Behavior of

Crosslinked PVA/GE Nanofibrous Scaffold

In this test, degradability and pH changes over the

degradation course of the crosslinked scaffold were eval-

uated by measuring the weight loss and pH values as a

function of incubation time in phosphate-buffered saline

(PBS) solution at 37°C (Figure 2A). The weight loss curve in-

dicated that the maximum weight loss percentage of scaf-

folds was 47%, which occurred on day 40. Also, the pH

changes of PVA/GE nanocomposite scaffolds in PBS solu-

tion at 37°C was studied (Figure 2B). As can be seen, the

pH values dropped during scaffold degradation through

40 days. The significant decrease in pH values occurred

during the first 20 days of degradation by acid produc-

tion. No significant changes were perceived at the end of

the study period and showed the pH value of 6.5 after 40

days of incubation. It was clear that the release of acidic

agents decreased through the last days of degradation (23).

The results of water absorption tests of crosslinked PVA/GE

scaffold illustrated that the capacity of the scaffold to ab-

sorb water decreased during the 40 days of immersion in

PBS (Figure 2B). The maximum water absorption rate took

place during the initial incubation period and was 198%.

The rate of water uptake reduced in the remainder of the

test and reached 100%. After 20 days, PVA/GE nanofibers

reached water absorption equilibrium.

4.5. Cell Morphology Isolated from Human Umbilical Cord Mes-

enchymal Stem Cells

The morphology of hUC-MSCs was observed by light

microscope (Figure 3A and B). Approximately 12 days after

cultivation, the hUC-MSCs migrated out from Wharton’s

jelly pieces. After this time, tissue fragments were removed

from flasks, and cells were cultured up to three passages.

Microscopic studies exhibited fibroblast-like morphology

with a homogeneous population of MSCs. This monolayer

of MSCs can then be used for cultivation over the scaffold.

The flow cytometry analysis of cultured hUC-MSCs at pas-

sage 3 showed that CD29, CD90, and CD105 surface markers

were expressed at high levels (88.12 ± 2.3%, 89.85 ± 0.27%,

and 95.73 ± 0.31%, respectively). Also, the results demon-

strated that the expression of hematopoietic lineage mark-

ers CD34 and CD45 were negative (3.21 ± 0.01% and 2.93

± 0.13%, respectively). In addition, hUC-MSCs in the os-

teogenic medium showed mineralization of calcium was

detected by Alizarin Red S staining. Also, adipogenic differ-

entiation of cells were confirmed using Oil Red O staining

(Figure 3C).

4.6. MTT Assay and Cell Morphology

MTT assay was used to study the biocompatibility of

the crosslinked PVA/GE scaffold with the hUC-MSCs after 3,

5, and 8 days of culture (Figure 4A). The average viability

difference of the cells on crosslinked scaffolds was higher

than that of the control group at the three evaluation time

points and were all statistically significant (P < 0.05). It

was 15.9%, 1.6%, and 10.1%, after 3, 5, and 8 days of culture, re-

spectively. Also, Wharton’s jelly hUC-MSC morphology and

distribution over the crosslinked PVA/GE scaffold were ob-

served by SEM at various magnifications. hUC-MSCs were

adhered and spread well over the surface of the scaffold

and covered the pores with high integration (Figure 4B). Af-

ter 48 hours of culture on the crosslinked PVA/GE scaffold,

the cells formed a homogeneous distribution.

4.7. Alizarin Red Staining and SEM Images of Differentiated

Cells

Under osteogenic conditions, the differentiation po-

tential of the hUC-MSCs cultured over the crosslinked scaf-

fold for 21 days was assessed. Calcium deposition was de-

tected by the appearance of a red-orange color that was

indicative of osteogenic differentiation (24). The amount

Gene Cell Tissue. 2021; 8(4):e115569. 3
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Figure 1. SEM image of PVA/GE scaffolds: A, non-crosslinked; C, crosslinked by GA vapor; E, crosslinked in GA/methanol. Image J graph of PVA/GE 50:50 scaffolds: B, non-
crosslinked; D, crosslinked by GA vapor; F, crosslinked in GA/methanol at 30000× magnification.
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Figure 2. A, Weight loss and pH changes; B, Water adsorption of the crosslinked PVA/GE scaffold in PBS at 37°C
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Figure 3. Morphology of hUC-MSCs: A, Migration of hUC-MSCs from Wharton’s jelly pieces on day 12; B, hUC-MSC at passage 3 without morphological changes; and C, confirmed
confirmed the differentiation of hUC-MSC to osteogenic and adipogenic cells

of calcium deposition was higher in the 3D cultures com-

pared to the control group, and on day 21, it reached its

maximum amount compared to all other days of the exper-

iment (Figure 5).

5. Discussion

Gelatin as a natural polymer was used to fabricate

nanofibrous scaffolds due to its high cell affinity, but low

processability and weak physical resistance. Meanwhile,

synthetic polymers, such as PVA, have sufficient physical

strength. However, it has a low tendency to adhere to cells

due to the lack of cell recognition sites. Hence, in some

previous studies, the preparation and utilization of PVA/GE

scaffolds have been reported. Ceylan et al. (25) prepared

PVA/GE cryogels by chemical and physical crosslinking of

PVA and gelatin mixture. They demonstrated that the phys-

ically crosslinked cryogels degraded faster than the chem-

ically cross-linked ones. However, the scaffolds crosslinked

physically showed better biocompatibility. Besides, Linh

et al. (26) fabricated PVA, GE, and PVA/GE nanofibers by

electrospinning. They investigated the effect of process pa-

rameters (i.e., the concentration of GE in PVA/GE blends,

electrical field, and tip-to-collector distance) on the chem-

ical, morphological, and mechanical properties of the pre-

pared scaffolds. Also, Linh and Lee (27) produced electro-

spun nanofibrous PVA/GE that was physically crosslinked

by methanol treatment. They seeded MG-63 cells on the

manufactured scaffold and showed that osteoblasts could

attach and proliferate on the nanofibrous PVA/GE.

The aim of this study was to fabricate a biocompati-

ble PVA/GE nanofibrous scaffold for osteogenic differenti-

ation of MSCs. For this purpose, we fabricated a PVA/GE

scaffold to obtain both mechanical strength through PVA

support and biological properties through gelatin. The

water-soluble nature of PVA and gelatin makes them in-

6 Gene Cell Tissue. 2021; 8(4):e115569.
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Figure 4. A, MTT assay, (A1) OD, (A2) percentage of cell viability on the crosslinked scaffold after 3, 5, and 8 days of culture; B, SEM image of the MSCs on the scaffolds (B1) 3000×
and (B2) 5000× magnification

sufficient for applications in aqueous media, such as bio-

logical systems. In this regard, we performed crosslinking

to improve this property of the scaffolds and make them

water-resistant and useful for tissue engineering applica-

tions. One of the most influential and broadly used chem-

ical crosslinking agents is glutaraldehyde (GA). GA can

crosslink polymers like gelatin and PVA that have hydroxyl

and amine groups. In the crosslinking step, a Schiff’s base

reaction occurs through aldehyde groups of GA and amine

groups of gelatin, as can be proved by FTIR and TGA. The

porosity percentage of the crosslinked PVA/GE nanofibers

was within the appropriate range for cellular activity and

proliferation, which indicates its promising potential for

use as a biomaterial in bone tissue engineering applica-

tions.

The surface wettability of nanofibrous scaffolds is a

crucial property that can affect cell behavior. As seen in

Appendix 2 in Supplementary File, the scaffold crosslinked

with GA/methanol indicated notably higher contact an-

gles compared to the non-crosslinked scaffold. This result

indicated that the imperfect hydrophobic nature of non-

crosslinked PVA/GE that causes problems for use in aque-

ous media was improved by crosslinking. Also, the ob-

tained results demonstrated that swelling property, degra-

dation behavior, and pH changes of the crosslinked scaf-

fold were appropriate for the tissue engineering applica-

tion. The hydrophobic properties of the scaffold and dis-

solution rate of oligomers affected the swollen behavior

of scaffold, which was related to the balance between the

degradation rate of oligomers in the solution and the wa-

ter uptake by nanofibers (28). From the MTT results, it be-

came clear that the non-toxic property of the crosslinked

scaffold provides good hUC-MSCs attachment. Due to the

presence of numerous polar groups in PVA and gelatin

structures, they are known as hydrophilic polymers. There-

fore, scaffolds containing PVA/GE can be destroyed and dis-

solved easily in aqueous solutions (such as PBS). However,

crosslinking leads to the formation of a 3D network of poly-

Gene Cell Tissue. 2021; 8(4):e115569. 7
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Figure 5. Alizarin red staining of the 7, 14, and 21-days differentiated cells on the scaffold. Conflicts of Interest. The authors declare that they have no conflicts of interest.

mers, which can provide a stable environment for the ad-

hesion and proliferation of seeded cells. SEM images indi-

cated that uniform structure of electrospun scaffold pro-

vided a suitable environment for cell proliferation and dif-

ferentiation. As shown by SEM images, the introduced

PVA/GE nanofibrous electrospun scaffold had excellent per-

formance for supporting the osteogenic differentiation of

hUC-MSCs into osteoblast-like cells.

5.1. Conclusions

A PVA/GE nanocomposite scaffold was successfully

prepared by the electrospinning technique. Chemical

crosslinking by GA and GA/methanol immersion was uti-

lized to change scaffold solubility. This treatment influ-

enced the morphology and solubility of the scaffold. Assay

results revealed that scaffolds have an excellent swelling

rate, degradation behavior, and pH changes. The in vitro

cell culture studies using Wharton’s jelly-derived MSCs

showed that nanofibrous scaffolds were biocompatible,

and cells seeded on the scaffolds adhered to and prolif-

erated on pore walls. Also, under osteogenic conditions,

MSCs could be differentiated into osteoblast cells. These

results show the potential application of PVA/GE nanocom-

posites in bone tissue engineering.

Supplementary Material

Supplementary material(s) is available here [To read

supplementary materials, please refer to the journal web-

site and open PDF/HTML].
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