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Abstract

Various factors may result in peripheral nerve injury leading to permanent functional loss. Here, we review the role of calcium and
potassium ions in peripheral nerve regeneration and repair. This narrative review of the literature collected its data by searching
Google Scholar, PubMed, Elsevier, Springer, Wiley, EBSCO, Scopus, and Science Direct. Publications were searched with no particu-
lar time restriction from 1997 to 2021, including all types of study. About 100 relevant papers were found from 1997, 77 of which
were selected for this study. Both beta subunits of sodium channels are expressed in peripheral neurons, and drugs that affect
those channels may facilitate nerve repair. Riluzole is a sodium/glutamate antagonist which has recently entered clinical trials
for spinal cord injury. Riluzole’s neuroprotective effects are due to sodium channel blockade and, subsequently, the prevention of
Ca2+ overflow. Besides, 4-aminopyridine (4-AP) is a neurotransmitter of potassium channel blockers that increases the rate of func-
tional improvement following peripheral nerve damage by promoting remyelination. Verapamil is a calcium channel blocker that
stimulates an endogenous anti-inflammatory response and reduces pro-inflammatory processes, thus causing pain modulation.
Inhibition of ROCKs accelerate the regeneration and functional restoration after spinal-cord damage in mammals, and inhibition
of the Rho/ROCK pathway has been additionally proven efficacious in animal models of stroke, inflammatory and demyelinating
diseases, Alzheimer’s disease, and neuropathic ache. Therefore, the neurite outgrowth of surviving neurons is necessary for nerve
regeneration to reinnervate target tissue after nerve damage. One of the critical components of the damage response process is
a local translation in axons, and it is critical for the regenerative outcome. On the other hand, it provides new axonal regrowth
molecules and induces signals returning to the cell’s soma to partake in regenerative pathways and survival.
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1. Context

Peripheral nerve injury (PNI) is a typical trauma ac-
counting for more than 3% of all traumatic injuries (1, 2).
Thermal, chemical, mechanical, or pathological damage
may result in severe PNI, leading to permanent motor loss.
The nerve may be pinched, stretched, partially sliced, or
even entirely severed in this form of injury. The Periph-
eral nervous system (PNS) tends to regenerate after mild
nerve damage spontaneously (3, 4). When the nerve is com-
pletely severed without surgical mediation, regeneration
is typically ineffective and functional recovery is incom-
plete (5, 6). Surgical intervention is required when there
is a severe defect in the peripheral nerve, which involves
transplanting a graft between the proximal and distal ends

of the nerve (7, 8). Unfortunately, the functional recovery of
a peripheral nerve after grafting is always sub-optimal.

Axons must have the intrinsic capacity to regrow to re-
generate the peripheral nerve, and the distal environment
must be tolerant of the axons’ regrowth; besides, target tis-
sues must embrace the restored axons (9, 10). Several fac-
tors play a role in the progress of nerve regeneration af-
ter surgical repair. Neuronal ionic imbalance is one of the
most significant inhibitory factors prolonging neuronal
recovery (3, 11). However, while many other variables have
been considered and analyzed, little evidence is available
on the impact of ionic currents on regeneration. Here, we
explore the role of ionic currents in peripheral nerve re-
generation.
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2. Mechanism of Peripheral Nerve Regeneration

After peripheral nerve damage, proliferating and re-
active Schwann cells produce growth elements, cytokines,
and growth-associated proteins, which play vital roles in
axon regeneration and nerve repair (12). It has been lo-
cated that exogenously administered glial cell line-derived
neurotrophic factor (GDNF) will increase the myelination
in axons. Tacrolimus (FK506) has been shown to enhance
nerve regeneration in the setting of axotomy, autograft
restoration, and allograft repair (13).

Rho kinases (ROCKs) are serine/threonine kinases that
are essential in fundamental tactics of migration, cell pro-
liferation, and cell survival. Inhibition of ROCKs accelerate
the regeneration and functional restoration after spinal-
cord damage in mammals, and inhibition of the Rho/ROCK
pathway has been additionally proven efficacious in an-
imal models of stroke, inflammatory and demyelinating
diseases, Alzheimer’s disease, and neuropathic ache. Be-
sides, ROCK inhibitors consequently can prevent neurode-
generation and stimulate neuroregeneration in various
neurological disorders (14). Experiments on rat sciatic
nerve have also shown that calcium alginate has a protec-
tive role in nerve regeneration due to its beneficial inter-
action with inflammatory cells and Schwann cells (15). In
another study to determine changes in the expression of
sodium channels (VGSCs) during sciatic nerve injury, the
results showed a positive adjustment of Nav1.3 and a lower
adjustment of Nav1.7, Nav1.8, and Nav1.9 (16).

3. Factors Restricting the Effectiveness of Peripheral
Nerves Regeneration

Regenerating transected nerves is a complex process
influenced by: (1) the form and timing of the repair; (2)
surgical procedure used for the repair; (3) graft size and
the type of nerve graft used; (4) lesion position; and (5) pa-
tient’s age (17-19).

4. Protection of Nerve Cells Against Apoptosis

Functional recovery can be reduced by losing the num-
ber of neurons after injury, therefore, prevention of apop-
tosis is maximized (20-23). Neurons undergoing apopto-
sis can be observed one week after injury in animal mod-
els (24, 25), and more than 40% of dorsal root ganglion
neurons die two months after injury (26). Motor neuron
death increased in a rat model with the proximity of the
injury site to the spinal cord (27, 28). Some strategies to

preserve healthy neurons capable of entirely reinnervat-
ing target tissues are critical for the best functional recov-
ery after nerve injury. At present, surgical nerve repair after
nerve damage helps limit the death of neurons. However,
pharmacological agents may also help preserve neurons
(22, 29). Most cells are destroyed due to the destructive
microenvironment of damaged tissues, which includes ox-
idative stress, ionic imbalance, lack of growth factor, and
inflammatory response, all promoting apoptosis. Multiple
strategies are warranted to avoid apoptosis best and get
the best functional recovery (9, 30, 31).

5. The Function of Ion Currents in Nerve Regeneration

5.1. Sodium Ionic Current’s Function in Nerve Regeneration

The molecular targets for medications that reduce
pain and treat heart arrhythmias, epilepsy, and bipolar dis-
order are all sodium channels. Type 1 transmembrane gly-
coproteins with an extracellular N-terminus and a cyto-
plasmic C-terminus are beta subunits of the sodium chan-
nel (31). The beta subunits of the sodium channel also
modulate channel expression and control channel gating.
They also form links via ankyrin and spectrin to the in-
tracellular cytoskeleton. In both the central and periph-
eral nervous systems, the beta subunits of sodium chan-
nels are expressed (32-34). In this regard, riluzole is the
anticonvulsant benzothiazole for managing amyotrophic
lateral sclerosis (ALS) and is one of the neuroprotective
sodium/glutamate antagonists (35-37). Its neuroprotective
effects are due to sodium channel blockade and, subse-
quently, the prevention of the overflow of Ca2+ (38). Rilu-
zole has been successfully used with animal models to min-
imize symptoms by modulating presynaptic glutamate re-
lease via blocking the voltage-gated sodium channels (35,
39). The use of Riluzole in vitro in adult dorsal root gan-
glion neurons is known to have a neuroprotective effect
by promoting the neurites outgrowth in terms of number,
length, and branch (28, 40, 41). Neurite outgrowth is nec-
essary for nerve survival and regeneration after nerve dam-
age to reinnervate target tissue.

Moreover, riluzole inhibits neuro-excitotoxicity in an-
imal models of neurological damage and can mitigate
nerve root pain shortly after administration. Also, it can
limit the development of synaptic dysfunction in nerve
roots to the spinal cord (42). Riluzole has recently been of-
ficially licensed to treat motor neuron disease, and its in-
fluence on damaged peripheral nerves in the regeneration
processes is being investigated (3, 43, 44).
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5.2. Calcium Ionic Current’s Function in Nerve Regeneration

Calcium ions are the regulators of the second messen-
ger of several metabolic pathways. In addition, calcium
ions influx into the presynaptic terminal is necessary for
neurotransmission. Indeed, axon transaction initiates a
broad depolarizing voltage discharge that travels back to
the soma and induces vigorous spiking activity and sus-
tained depolarization (45).

Verapamil is a calcium channel blocking agent. In addi-
tion to its effects on the cardiovascular system, several lab-
oratory studies have demonstrated its role in peripheral
nervous system regeneration by decreasing scar formation
(46, 47). However, it is not clear if the topical administra-
tion of verapamil would be effective after in vivo surgical
nerve repair to reduce scar formation in the nerve tissue
(48). Verapamil’s anti-scar effects are due to stimulating
an endogenous anti-inflammatory response and decreas-
ing pro-inflammatory activity, thus causing nerve regener-
ation (49).

Verapamil may prevent scar development by inhibit-
ing the transduction of signals inside and outside of fi-
broblasts and preventing collagen and extracellular ma-
trix production, thus reducing biological activity in cells
(48). The key to an effective damage response is a local
translation in axons, which is critical for the regenerative
outcome. Also, verapamil provides new axonal regrowth
molecules. On the other hand, it induces signals that they
are returning to the soma cell, which are helpful in the
path of restoration and survival.

Rapamycin is another drug of interest in the recovery
of injured nerves. The mammalian target of rapamycin
(mTOR) expression is increased at the injury site and reg-
ulates the axons mechanism in a peripheral lesion (50, 51).
Furthermore, mTOR pathway destruction affects nerve re-
growth in the PNS. A sudden and widespread injection of
calcium into the axoplasm occurs at peripheral nerve in-
jury, resulting in a surge of depolarization along the axon
to the soma and disrupting gene expression. In addition
to this reverse signaling, calcium aggregates at the injury
site and causes the cytoskeleton’s calpain-dependent struc-
tures to be rearranged, promoting membrane re-sealing,
which relies on calcium-regulated proteins. Moreover, the
rise in local calcium causes mitogen-activated protein ki-
nase (MAPK) signaling reversed by dual leucine zipper-
bearing kinase (DLK) phosphorylation. This, in turn, pro-
vokes gene expression (52, 53). A dinin-mediated "fast"
transmission, which depends on motor-based axons, fol-
lows this "slow" signaling in a matter of hours. This
increases calcium load, incorporating the extracellular
signal-regulated kinases (ERK1/2) pathway in the pancre-
atic stem cells (PSC), which appears to be one of the most

significant factors in nerve recovery. During a rise in the lo-
cal calcium concentration, the mitochondria suddenly re-
lease excess calcium ions in the injured peripheral nerve.
This causes significant mitochondrial dysfunction and re-
active oxygen species (ROS) production in mitochondria
enriched with axons. As a result of calcium overload, H2O2

is released by the mitochondria of injured neurons and
causes neurotransmission by signaling ERK1/2 (54).

Degenerative structural and molecular modifications
at the site of damage are caused by the peripheral nerve in-
jury (PNI) cascade. The calcium influx into Schwann cells
occurs soon after the mechanical injury due to amputation
and oxygenation (55). In vitro, the early proliferation of
Schwann cells is induced by calcium. It also reaches the
axoplasm of weakened axons where calpain, a critical pro-
tease for axonal degradation, is activated. The entry of cal-
cium into the axon is also essential for new growth cones
to evolve.

A controlled concentration of Ca2+ may be required
for nerve regeneration, indicating that Ca2+ channel block-
ers can improve recovery (56). Increased calcium ex-
change activates intracellular cascades and proteins con-
trolling genes, such as signal-regulated kinase (ERK) and
N-terminal protein kinases extracellular signal-regulated
protein kinases family of MAPK. Besides, ERK 1/2 is activated
20 minutes after damage. The MAPK triggering occurs six
hours later to increase calcium, neuroglia, and fibroblast
growth factor (FGF-2) levels. Activation of p38 MAPK, as one
of the several significant molecules for Wallerian degener-
ation, happens later and destroys myelin. In this cascade,
the low current activates the C-jun signal transcription fac-
tor, which regulates Schwann cell reaction to damage. The
inactivation of C-jun in Schwann cells is also affected by
axon regeneration, leading to the loss of the necessarily in-
creased expression of specific neurotrophic factors linked
to C-jun. Rapid activation of ERK 1/2 is a prerequisite for
Schwann cell proliferation. ERK 1/2 and other transcription
factors, such as activating transcription factor 3 (ATF3), are
vital for forming axons.

Calcium channels are divided into high voltage-
activated (HVA) channels and low voltage-activated (LVA)
channels, depending on their activation voltage and
conduction. As known, HVA and LVA channels have dif-
ferent gate and drug characteristics. 1, 4 dihydropyridine
antagonists (DHPs) bind preferentially to HVA channels,
and DHP agonists help increase the open time and the
single-channel conductance (57). Interestingly, specific
HVA calcium channels exhibit distinct tissue preferences
and various sensitivities to DHP and other toxin antago-
nists. This has contributed to the discovery of several HVA
channels.
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DHP-sensitive channels are present in many cells and
have a long activation period, hence named DHP calcium
channels or L-type (LTCC) (9, 58). The CTX-sensitive calcium
channels are pronounced because of their location in the
nervous system, also known as N-type channels. In cerebel-
lar Purkinje cells, omega-AGA-sensitive was first observed,
referred to as P-type channels. In addition to these three
types of HVA, specific calcium channels were not suscep-
tible to any of those antagonists and were classified as R-
type-resistant channels. Among the LVA channels, only one
kind of calcium channel is registered, named the transient
calcium channel (also referred to as T-type channel). T-type
channels are similar in different phrases and antagonist-
resistant properties to type L channels. However, they
are distinguished from L-type channels by single-channel
conductivity and activation at low membrane potential.
The various sensitivities to various antagonists of HVA and
LVA channels demonstrate the ability of these antagonists
to change the calcium conduction preference in different
cells (59, 60).

5.3. Synaptic Calcium

Previous studies have shown evidence for centralized
improvements in calcium and extracellular regulation
during neurodegenerative events, such as Alzheimer’s,
Parkinson’s, Huntington’s diseases, and ALS (61-63).

5.4. Mitochondrial Calcium

TOM70 is an outer membrane mitochondrial translo-
case (TOM) subunit that imports mitochondrial proteins.
Decreased TOM70 interaction with IP3 receptors decreases
the role of ER-bound IP3 in mitochondrial calcium trans-
port. Significantly reduced production of mitochon-
drial calcium decreases mitochondrial respiration, affects
bioenergy of cells, causes autophagy, and prevents re-
duced TOM70 cells from proliferating (64, 65).

5.5. Calcium Channels and Neuropathic Pain

Expression in cell membranes of T-type CaV3.2 calcium
channels and their activation in the dorsal root ganglion
(DRG) damaged neurons in mice with neuropathic pain in-
crease after spared nerve injury. Antisense inhibition may
decrease mechanical allodynia 14 days after spared nerve
injury, suggesting that CaV3.2 T-type calcium channels play
a role in damaged DRG-mediated neurons (66). The CaV3.2
membranes of medium-sized DRG neurons play a consid-
erable function in neuropathic pain (67).

5.6. CaV3.2 ChannelMolecular Pathways Impaired After Spared
Nerve Injury

There are two possibilities about how it occurs.
The first possibility is an inflammatory mediator, such
as interleukin-6, which is transmitted from activated
macrophages and glial cells to its receptors to regulate
CaV3.2 in damaged DRG neurons. The second possibility
is via neuropoietic cytokines, such as ciliary neurotrophic
factor and leukemia inhibitor. Such factors may regulate
the traffick in weakened DRG neurons of T-type CaV3.2
channels through the Janus kinase (JAK) and ERK signaling
pathways (68).

5.7. Potassium Ionic Current’s Function in Nerve Regeneration

In experiments, it is vital to block the expression
of potassium channels to control the concentration
of peripheral potassium ions (69). In this regard, 4-
aminopyridine (4-AP) is a blocker of potassium channels
with the chemical formula C5H4N-NH2 (70). Medical
efficacy for 4-AP has been shown in treating neurological
disorders such as multiple sclerosis (71). Besides, 4-AP
mechanisms of action are revealed by its effect on en-
abling impulse conduction in demyelinated axons where
it blocks K+ channels that would allow K+ to leak out of the
axons. That, in turn, allows axons to restore the degree of
depolarization needed to propagate action potential (72).

Recently, it has been shown that 4-AP is a potent small
molecule with neurodegenerative effects that improve
both the speed and degree of clinical regeneration follow-
ing acute peripheral nerve damage by promoting remyeli-
nation (73).

5.8. Potassium Channels

In nearly all types of eukaryotic cells, potassium chan-
nels are expressed and active in many physiological pro-
cesses in electrically stimulated and non-excitable cells (74,
75). Depending on the components of the vital structure,
potassium channels can be broken into three groups: (1)
inwardly rectifying potassium (Kir); (2) two-pore domain
potassium (K2P); (3) and voltage-gated potassium chan-
nel (Kv). Members of the Kir family are primarily split
into three major evolutionary classes of primary channels
invertebrates and found in almost all cells. G protein-
activated channels as K+ subfamily channels are expressed
in neurons, and Kir channels represent ATP modulation in
epithelial and glial tissues. These channels are strongly ex-
pressed in the CNS and have a role in depression, epilepsy,
and other neurological disorders (76, 77).
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5.9. Potassium Currents and Neuropathic Pain

In painful neuropathies, extreme irritability of pri-
mary afferent neurons is a typical finding associated with
reduced K current in various animal models. In all nerve
cells, K currents are the dominant external currents, con-
tributing to cell over-polarization. As a result, cell excitabil-
ity is decreased. Based on their kinetics and drug suscep-
tibility, K currents are approximately classified into three
categories: (1) slow-inactivating sustained K-current (IK),
(2) fast-inactivating transient current (IA); and (3) slow-
inactivating transient current (ID). The most critical factor
for activity, possible threshold, waveform, and firing fre-
quency is the IA current, indicated by voltage-gated potas-
sium channels (Kv). Neuropathic pain’s origin is not ob-
served with changes in excitability and Kv4.1 expression in
the primary afferents of injured neurons (78).

5.10. Potassium and Peripheral Nerves

The family of KCNQ genes encodes potassium voltage-
gated channels as Kv7 channels (Kv7.1 - Kv7.5). Kv7.2 and
Kv7.5 channels are located in nervous tissue, while Kv7.1 is
located in the heart and smooth muscle. In dorsal root and
trigeminal ganglion nerves, Kv7.2 and Kv7.3 are expressed.
Biological agents, such as intracellular signaling of mus-
carinic acetylcholine receptors, can influence Kv7 channel
function. Phospholipase-mediated Kv7 channel repression
has been documented to trigger peripheral inflammatory
pain (79, 80). A powerful mechanism of neuropathic pain
is believed to be the reduced expression of Kv7.2 channels
in primary afferent nerves. Because of the high excitabil-
ity of the nerve membrane, Kv7 channels have been re-
searched to treat neurological diseases. Compounds that
amplify the neuronal Kv7 channels may have an inhibitory
effect on the onset of seizures and neuropathy. This sug-
gests that synthetic compounds bind to Kv7 channels and
deform channel opening, which may effectively treat neu-
ropathy (81).

6. Conclusion

One of the main impediments to a successful outcome
after nerve repairs is the changes in the distal part of the
nerve. Surgical nerve repair after nerve damage is used
to avoid the death of neurons; however, pharmacologi-
cal influences may also be helpful for neuronal safety. In
this regard, Riluzole’s neuroprotective effects are due to
sodium channel blockade and, subsequently, the preven-
tion of Ca2+ overflow. Also, 4-aminopyridine is a small
solid molecule with neuro-regenerative properties that
improve both the speed and degree of functional regener-
ation by facilitating remyelination after acute peripheral

nerve injury. Furthermore, verapamil, a calcium channel
blocker, activates the endogenous anti-inflammatory re-
sponse. The neurite outgrowth of surviving neurons is nec-
essary for nerve regeneration after nerve damage to rein-
nervate target tissue. One of the critical components of
the damage response process is a local translation in ax-
ons, which is critical for the regenerative outcome. On the
other hand, it provides new axonal regrowth molecules
and induces signals that they are returning to the cell’s
soma to partake in regenerative pathways and survival. In
Schwann cells, dorsal ganglion neurons (DRG) are two to
three times more common following axonal damage with-
out C-jun activation. The inactivation of C-jun in Schwann
cells is also affected by axon regeneration due to the loss
of the necessarily increased expression of specific neu-
rotrophic factors leading to the existence of C-jun.

7. Future Perspectives

Intensive research is needed to evaluate drugs effective
in regenerating peripheral nerves and evaluate ionic cur-
rents associated with it, especially in humans.
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