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Abstract

Background: Helicobacter pylori CagA oncoprotein was injected into mammalian host cells via type IV secretion system, where it
was tyrosine phosphorylated at the Glu-Pro-Ile-Tyr-Ala (EPIYA) sequence. Tyrosine phosphorylation of CagA was shown to be a pre-
requisite for the induction of actin cytoskeletal rearrangement in AGS gastric epithelial cells. The needle-like projections, known as
the hummingbird phenotype, are thought to be involved in gastric disease. Moreover, Pragmin, a mammalian protein, contains a
single EPIYA motif, and tyrosine phosphorylation of Pragmin at EPIYA motif in AGS cells induce cell-morphological changes, which
are characterized by elongated cell shape with invasive phenotype that contributes to tumor invasion and metastasis.
Methods: In this study, AGS cells were transfected by CagA or/and Pragmin using lipofectamine 2000 reagent, then, cell-
morphological changes were investigated using light microscope. Finally, elongated cells were counted and the results were com-
pared.
Results: Our results revealed that there is a competition between CagA and Pragmin to interact with CSK via EPIYA motif. We also
found that although the cell-morphological changes are particularly dependent on tyrosine phosphorylation at EPIYA motifs in
both, changes of cell morphology are different in CagA and Pragmin transfected cells.
Conclusions: Our findings suggest that the mechanisms inducing the elongated cell morphology in CagA or Pragmin transfected
cells may be different.
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1. Background

Helicobacter pylori was recognized as a type I carcino-
gen, and chronic infection with H. pylori has been linked to
atrophic gastritis, peptic ulcers, and gastric cancer (1). H.
pylori strains are frequently segregated into cagA-positive
and cagA-negative strains. Compared with cagA- H. pylori
strains, cagA+ strains significantly increase the risk of de-
veloping severe gastritis and gastric carcinoma (2, 3). The
cagA gene, which is located at cag pathogenicity island
(cagPAI) in the H. pylori chromosome, encodes a 120 to 145-
kDa immunodominant protein, CagA (4, 5). CagA oncopro-
tein is delivered directly by the bacterium into gastric ep-
ithelial cells via type IV secretion system and localized to
the inner side of the plasma membrane. Tyrosine phos-
phorylation of CagA occurs by Src family kinases (SFKs)
such as c-Src, Lyn, Fyn, and Yes or c-Abl kinase at the Glu-
Pro-Ile-Tyr-Ala (EPIYA) sequence, which is present in vari-
able numbers in its C-terminal region (6-8). Depending on
the geographic region, 4 distinct EPIYA sites have been de-
scribed including EPIYA-A, -B, -C, and -D, each of which is
conserved (9). Remarkably, the EPIYA-A and EPIYA-B mo-
tif are found in strains throughout the world, but EPIYA-C

is mainly present in strains from Asian countries, Europe,
and North America (Western type), while the EPIYA-D mo-
tif predominates in the far East such as China, Japan, and
Korea (East Asian type) (9). By tyrosine phosphorylation at
EPIYA motifs, CagA is enabled to interact with huge num-
bers of SH2 domains containing proteins to disturb host
cell signal transduction for better colonization and spread
of bacterial infection. In this regard, interaction of EPIYA
motifs of CagA (EPIYA-A or EPIYA-B) with CSK (C-terminal
Src kinase), (EPIYA-C or EPIYA-D) with SHP2 (SH2 domain-
containing protein tyrosine phosphatase 2), (EPIYA-B) with
PI3K (phosphatidylinositol 3-kinase), and Crk were demon-
strated (10-15). However, the EPIYA segment (s) responsi-
ble for the Crk interaction is not known. Furthermore, it
was shown that H. pylori induced a characteristic morphol-
ogy of host epithelial cells, which has been referred to as
the hummingbird phenotype; this was resulting from reg-
ulation of both the actin cytoskeleton and focal adhesion
and it may be involved in carcinogenesis. Notably, it has
been emphasized by many findings indicating that elon-
gation morphology of host cell is strictly dependent on
CagA injection (16-18). Despite the discovery of many target
molecules in host cells, which is caused by H. pylori infec-
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tion, the related processes that lead to hummingbird phe-
notype are still unclear.

From the mammalian side, it was reported that Prag-
min contains a functional EPIYA motif at N-terminus. Af-
ter tyrosine phosphorylation at EPIYA motif, Pragmin can
interact with CSK. Interestingly, it was found that the cells
with high expression of Pragmin have the elongated mor-
phology that contributes to tumor invasion and metasta-
sis (19-21). In this regard, it was shown that ectopic ex-
pression of Pragmin in human pancreatic duct epithelial
(PDAC) cells induced an elongated mesenchymal-like cell
morphology, which is associated with increased cell migra-
tion and invasion (22). Taken to gather, we selected CagA
and Pragmin for further studying because both contain
EPIYA motifs, showed elongated cell morphology after ty-
rosine phosphorylation, and both can interact with CSK, a
common target protein which contains SH2 domain.

2. Objectives

The present study was conducted to obtain more infor-
mation about tyrosine phosphorylation at EPIYA motif de-
pendent mechanisms in the cells, and particularly their po-
tential role in cell invasion and carcinogenesis, which can
be used as therapeutic strategies.

3. Methods

3.1. Expression Vectors

A pCMV-based mammalian expression vector for rat
Pragmin was kindly provided by Dr. M. Negishi, (Kyoto Uni-
versity, Japan). Wild-type CagA (CagA-ABCCC derived from
H. pylori NCTC11637 Western strain) was cloned into the
pSP65Srα mammalian expression vector; pSP65Srα mam-
malian expression vector was also used as a control (empty
vector).

3.2. Cell Culture and Transfection

AGS human gastric epithelial cells were cultured in
RPMI 1640 medium supplemented, with 10% fetal bovine
serum (FBS), at 37°C, under a 5% CO2 humidified atmo-
sphere; 10 µg expression vectors were totally transfected
into 4.5 × 105 AGS cells in a 60-mm dish using lipo-
fectamine 2000 (Invitrogen), according to the manufac-
turer’s instructions. Cell morphology was examined un-
der light microscopy (Nikon, Tokyo, Japan) 20 hours after
transfection. We used pSP65Srα (empty vector) as a con-
trol. Elongated cells were counted in random fields of sur-
face cell culture dish in groups of cells, which were trans-
fected with pSP65Srα, CagA, Pragmin, and CagA/Pragmin.

3.3. Statistical Analysis

Statistical analyses were performed using Student’s t
test and the MedCalc software (Version 12.1.4) was used.

4. Results

To investigate cell morphology, AGS cells were cultured
one day before transfection using lipofectamine 2000,
they were then transiently transfected with pSP65Srα
(empty vector), Pragmin, CagA, or CagA/Pragmin vectors.
On the other hand, we transfected AGS cells by 10 µg
pSP65Srα, 5 µg Pragmin + 5 µg pSP65Srα, 5 µg CagA + 5 µg
pSP65Srα, and 5 µg CagA + 5 µg Pragmin. Cell morpholog-
ical changes were evaluated 24 hours after transfection us-
ing light microscope, then, elongated cells were counted
randomly in different fields in each of the dishes (Figure 1).
Our results revealed that cell morphology is hummingbird
phenotype in CagA-transfected cells, whereas Pragmin-
transfected cells showed elongated morphology (or inva-
sive form). Next, we counted the number of cells with
elongated morphology and compared them (Figure 2).
Our results showed that the difference between Pragmin-
transfected cells and empty vector transfected cells was
significant. Moreover, the difference between elongated
cells obtained from CagA-transfected cells and empty vec-
tor transfected cells was also significant (Figure 2). Impor-
tantly, our results demonstrated no significant difference
between CagA-transfected cells and CagA/Pragmin trans-
fected cells. Percentage of elongated cells was 6.6%, 35.1%,
62.3%, and 63.9% in control (pSP65Srα), Pragmin, CagA, and
CagA/Pragmin transfected cells, respectively (Figure 2).

In fact, the presence of common step (interaction CagA
or Pragmin with CSK via EPIYA motif) and competition
between CagA and Pragmin were thought to influence
the number of elongated cells. Also, downstream related
molecules in induction of cells with elongated morphol-
ogy were different. Taken together, our results suggest
that in spite of some functional homology effects between
CagA oncoprotein and Pragmin in AGS cells to induce cell-
morphological changes, the changes in cell morphology
are different, and thus it seems that the related mecha-
nisms involved in these processes may also be different.

5. Discussion

In the present study, we compared morphological
changes of AGS cells between CagA-transfected cells and
Pragmin-transfected cells. Both were tyrosine phospho-
rylated at EPIYA motif and were shown to influence cell
morphology. CagA is a bacterial effector protein contain-
ing EPIYA motif, whereas Pragmin is a mammalian protein

2 Gene Cell Tissue. 2017; 4(2):e12598.

http://genecelltissue.com


Safari F and Jodeiry Zaer S

Figure 1. Morphological Investigation of AGS cells by Using Microscopy

AGS cells were transfected with different vectors (Scale bars, 10 µm).

Figure 2. Percentage of Elongated Cells Was Shown
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Error bars represent means + SD. *indicates significance with a P value < 0.0005,
**indicates significance with a P value < 0.0001, ns: not significant (Student’s t-test).

containing EPIYA motif. We found that the morphology of
AGS is elongated shape or has an invasive form in Pragmin-
transfected cells, but the morphology of AGS cells is polyg-
onal shape and needle form in CagA-transfected cells (or
hummingbird phenotype). Our results revealed that the
number of elongated cells in CagA transfected cells in the
presence or absence of Pragmin is the same. Consistent
with our results, Safari et al. reported that in the pres-
ence of CagA H. pylori, the amount of CSK /Pragmin inter-
action was reduced. In fact, they found the competition
between CagA and Pragmin to interact with CSK in tyro-
sine phosphorylation manner at EPIYA motif (19). Of note,
it was demonstrated that CagA/CSK interaction occurs at

plasma membrane, whereas Pragmin interact with CSK at
cytoplasm, and thereby the possible mechanisms that are
involved in related downstream molecules to induce elon-
gated cells may also be different. In this regard, it was
reported that Src-mediated CagA phosphorylation is fol-
lowed by a rapid inactivation of Src kinase activity by the
binding of CagA to Csk, and then, Src kinase inactivation
leads to the dephosphorylation of Src target proteins such
as vinculin, ezrin, and cortactin, which are important in
the process of regulation of the actin cytoskeleton and fo-
cal adhesions. This process contributes to inducing mor-
phological changes of H. pylori-infected cells (18, 23, 24).
Also, it was shown that phosphorylation of cortactin (ser-
ine 405) was mediated by ERK1/2 kinases, which might trap
activated FAK, leading to a disturbed turnover of focal ad-
hesions and cell elongation morphology (25). In another
study, the activation of SHP-2 phosphatase activity was re-
ported to inactivate FAK (focal adhesion kinase) in cells
that ectopically express CagA (26). Inactivated FAK cannot
be localized in focal adhesions and might support the de-
velopment of the elongated cell phenotype. Of note, after
inactivation of Src, CagA phosphorylation is sustained by
Abl kinase. However, CagA dependent downstream effects
in this way have not yet been known (7, 8).

Recently, it was found that CSK/Pragmin interaction
stimulates kinase activity of CSK, which is essential to phos-
phorylate Pragmin on Y238, Y343, and Y391 (The latter is lo-
cated at EPIYA motif.). Moreover, interaction Pragmin with
vinculin, a focal adhesion component(s), was found. There-
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fore, it seems that vinculin recruits Pragmin and Pragmin-
associated CSK to focal adhesion spots to elevate cell motil-
ity and elongated cells formation, demonstrating the ma-
jor role of CSK/Pragmin interaction in inducing invasive
shape of the cell in MKN7 human gastric epithelial cells
(20). Further studies should be conducted to better under-
stand tyrosine phosphorylation at EPIYA motif dependent
mechanisms, which involve in carcinogenesis, to design
anticancer drugs.
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