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Abstract

Background: Inorganic arsenic (As) has destructive effects on the kidneys. The exact mechanism and effects of Tribulus terrestris
(TT) and endurance training (ET) on renal apoptosis and oxidative stress are not quite clear.
Objectives: The effects of ET and TT on apoptotic markers and oxidative stress were examined in the kidney tissue of rats, poisoned
with As.
Methods: In total, 49 rats were randomly allocated to seven groups: (1) control; (2) As (68 mg/L/day for 8 weeks); (3) As + 5 mg/kg TT
(As + TT5); (4) As + 10 mg/kg TT (As + TT10); (5) As + ET (running on a treadmill, five sessions each week, for eight weeks); (6) As + ET
+ 5 mg/kg TT (As + ET + TT5); and (7) As + ET + 10 mg/kg TT (As + ET + TT10). At the end of 8 weeks, the rats were sacrificed and levels
of cytochrome-C (Cyt-C), malondialdehyde (MDA), O-6-methylguanine-DNA methyltransferase (MGMT), and prooxidant-antioxidant
balance (PAB) in their kidney tissues were measured.
Results: Renal Cyt-C, MDA, PAB, and MGMT decreased by ET (P≤0.05). ATP levels increased in TT5, TT10, ET + TT5, and ET + TT10 groups
(P ≤ 0.05), while Cyt-C, MDA, PAB, and MGMT decreased in these four groups (P ≤ 0.05). Reduction of Cyt-C, MDA, PAB, and MGMT
was greater in TT10 than in TT5 group and in ET + TT10 than in ET + TT5 group (P ≤ 0.05).
Conclusions: ET and TT, synergistically and/or alone, reduced oxidative stress and apoptotic markers in the kidney tissues of rats.
A dose-dependent effect was observed for TT.
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1. Background

Inorganic arsenic (As) is one of the forms of As with
destructive effects on various organs in the body; how-
ever, the kidney is one of the most sensitive tissues af-
fected by this toxic substance (1). As poisoning increases
reactive oxygen species (ROS), malondialdehyde (MDA),
caspase-3, and dimethyl arsenic radicals, it decreases an-
tioxidants, impairs lipid peroxidation, causes mitochon-
drial morphological changes and damage to DNA, and in-
duces cytochrome-C (Cyt-C) release and apoptosis in cells
(2-4). In addition, increased ROS following As poisoning
results in activation of the non-coding protein miR-199a-
5p, cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1α
(HIF-1α), and DNA methyltransferase, which disrupts nu-
clear transcription (3-5).

Exercise is an effective and non-invasive method for
prevention of kidney diseases (6). The beneficial effects

of exercise on kidney include improving blood pressure,
regulating mineral concentrations, and reducing ROS and
apoptosis (7). Exercise reduces oxidative stress, xanthine
oxidoreductase, cytochrome P450 4A (7), tumor necrosis
factor (TNF) receptor superfamily 1b (Tnfrsf1b), and lipid
peroxide (8), Bax, caspases 3, 8, 12, and calpain and in-
creases total antioxidant capacity of the kidney (9, 10).
However, no significant effect has been observed for exer-
cise on nicotinamide adenine dinucleotide phosphate ox-
idase [NAD(P)H] activity, 20-hydroxyeicosatetraenoic acid
(7), and renal function (estimated glomerular filtration
rate) of patients with kidney diseases (9).

The use of medicinal plants along with exercising can
inhibit the possible impacts of oxidative stress and thus
improve kidney disorders. Tribulus terrestris (TT) has long
been used in traditional medicine for the treatment of kid-
ney diseases with beneficial effects on kidneys, possibly re-
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lated to its anti-oxidative, anti-apoptotic, vasodilator, urea
depletion, and kidney stone excretion effects (11). Research
has shown that consumption of 500 or 300 mg/kg TT de-
creases the apoptosis index in renal tissue (11). In addi-
tion, 200 mg/kg TT extract decreased MDA, kidney injury
molecule-1 (KIM-1), and caspase-3, while increased catalase,
GPx, and superoxide dismutase (SOD) in renal tissues of
gentamicin-induced nephrotoxic rats (12). Examination of
the simultaneous effect of TT and endurance training (ET)
has also shown that they can synergistically prevent pos-
sible injuries, caused by exercising (13) and improve body
composition (14).

2. Objectives

Environmental pollution causes several diseases, espe-
cially in the kidney, which has been the focus of attention
of researchers to find the most effective methods for the
prevention or treatment of these disorders. Considering
inadequate information regarding the interactive effect of
ET and TT on apoptosis and oxidative stress in the kidney,
this study aimed to examine the effects of ET and TT, alone
and in combination, on apoptotic markers and oxidative
stress in the kidney tissues of rats poisoned with As.

3. Methods

In total, 49 adult male Wistar rats were used in this ex-
perimental study. After seven days of adaption to the new
environment, the rats were allocated randomly to seven
groups, namely: (1) control (C); (2) arsenic (As); (3) As + 5
mg/kg TT (As + TT5); (4) As + 10 mg/kg TT (As + TT10); (5)
As + ET (As + ET); (6) As + ET + 5 mg/kg TT (As + ET + TT5);
and (7) As + ET + 10 mg/kg TT (As + ET + TT10). During eight
weeks, groups 3 to 7 received 68 mg/L/day sodium (meta)
arsenite (15) and groups 5 to 7 ran on the treadmill for five
sessions each week (30 minutes per session). In addition,
groups 3, 4, 6, and 7 received specific doses of TT per day
(16). Two days (48 hours) after the last session of exercise
and/or receiving medications (TT and/or As), the rats were
anesthetized using xylazine and ketamine, and after being
sacrificed, the kidney tissues were isolated by an expert lab
specialist and stored at -20°C.

The levels of adenosine triphosphate (ATP, Abnova
Company; USA; KA1661), MDA (Casobio; Spain; Num-
ber. CSB-E08558r), cytochrome-C (Casobio; Spain; Num-
ber. CSB-E14281r), O-6-methylguanine-DNA methyltrans-
ferase (MGMT, Develop Co.; USA; Cat No: DL-MGMT-Ra), and
prooxidant-antioxidant balance (PAB) were measured us-
ing enzyme-linked immunosorbent assay (ELISA) kits.

3.1. Training Protocol

To familiarize the rats with treadmill, the rats in the
training groups were allowed to run on the treadmill for
three sessions at a speed of 5 - 10 m/min each time with
moderately intense training (50 - 55% VO2max) to be effi-
cient physiologically efficient. For the initial training, the
rats in the training groups ran on the treadmill five days
per week (for eight weeks), which included three training
days and one day of rest. The training sessions included
five minutes of warm-up and five minutes of cooling at a
rate of 4 - 5 m/min. These intervals were counted in the
main training time. The rats then performed ET, five days
per week, for two months at a speed of 23 m/min, 30 min-
utes each session (17).

3.2. Preparation of Tribulus terrestris Extract

The TT extract was prepared similarly to the protocol,
explained in our previous study (18). In summary, the fruit
was ground, and 100 gr of the powder was kept in 85 mg
of 70% alcohol. After three days of allowing the solution
to rest in the laboratory, it was filtered using a paper filter
to separate the liquid and extract the dry extract. The dry
extract was concentrated using normal saline, and specific
doses were prepared to be given to the rats per day (16).

3.3. Data Analysis Procedure

One-way ANOVA, Shapiro-Wilk, and Tukey’s post hoc
tests were used for analyzing the data (P < 0.05).

4. Results

Studying the renal levels of MGMT, ATP, Cyt-C, MDA,
and PAB showed a significant difference among the groups
(based on a One-way ANOVA test, P = 0.001). Pairwise com-
parison (Tukey’s post hoc test) showed much higher MGMT
values in the As group compared with the C group (P =
0.001); as well as all interventional groups [As + TT5 (P =
0.004), As + TT10, As + ET, As + ET + TT5, and As + ET + TT10
groups (all P = 0.001)]. There were also significant differ-
ences between the interventional groups. As shown in Fig-
ure 1, lower MGMT values were observed in As + TT10, As +
ET + TT5, and As + ET + TT10 compared with As + TT5 group,
in As + ET + TT10 and As + ET + TT5 groups compared with
As + TT10 group, in As + ET + TT5 and As + ET + TT10 groups
compared with As + ET group, and in As + ET + TT10 group
compared with As + ET + TT5 group (all P = 0.001, Figure 1).

Studying the renal levels of ATP showed significantly
lower levels in the As group compared with the control
group (P = 0.001), as well as four of the interventional
groups [As + TT5, As + TT10, As + ET + TT5, and As + ET +
TT10 (all P = 0.001)]. The other interventional group (As +
ET) had a lower ATP level compared with the As group (P
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Figure 1. O-6-methylguanine-DNA methyltransferase (MGMT) levels in the seven re-
search groups (*** P ≤ 0.001, increased significantly in comparison to the C group;
### P ≤ 0.001 and ## P ≤ 0.01, decreased significantly in comparison to the As
group; δδδ P ≤ 0.001, decreased significantly in comparison to the As + TT5 group;
βββ P ≤ 0.001, decreased significantly in comparison to As + TT10 and As + ET
groups; εεε P ≤ 0.001, decreased significantly in comparison to the As + ET + TT5
group).

= 0.003). Comparing the interventional groups with each
other showed lower ATP levels in As + ET group compared
with As + TT5, As + TT10, As + ET + TT5, and As + ET + TT10
groups, in As + TT5 group compared with As + ET + TT10 and
As + ET + TT5 groups, in As + TT10 group compared with As
+ ET + TT5 and As + ET + TT10 groups, and in As + ET + TT5
group compared with As + ET + TT10 group (all P = 0.001,
Figure 2).

Renal levels of Cyt-C were significantly higher in the As
group compared with the C group (P = 0.001), as well as
four interventional groups [including As + TT10, As + ET, As
+ ET + TT5, and As + ET + TT10 groups (all P = 0.001)]. Com-
paring the interventions showed lower Cyt-C levels in As +
ET + TT5 and As + ET + TT10 groups compared with As + TT10
group, in As + ET + TT5 and As + ET + TT10 groups compared
with As + ET group, and in As + ET + TT10 group compared
with As + ET + TT5 group (all P = 0.001, Figure 3).

Considering MDA levels, the As group had a higher
level, compared with the control group (P = 0.001), as well
as all interventional groups (all P = 0.001). Comparing the
interventional groups with each other also showed signif-
icant differences, including lower MDA levels in the As +
TT10, As + ET + TT5, and As + ET + TT10 compared with As
+ TT5 group, in As + TT10, As + ET + TT5, and As + ET + TT10
groups compared with As + ET group, in As + ET + TT5 and
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Figure 2. Adenosine triphosphate (ATP) levels in the seven research groups (*** P
≤ 0.001, decreased significantly in comparison to the C group; ### P ≤ 0.001, in-
creased significantly in comparison to the As group; ΨΨΨ P ≤ 0.001 and ΨΨ P ≤
0.01, decreased significantly in comparison to the As, As + TT5, As + TT10, As + ET + TT5,
and As + ET + TT10 groups; δδδ P ≤ 0.001, increased significantly in comparison to
As + TT5 and As + TT10 groups; εεε P ≤ 0.001, increased significantly in comparison
to the As + ET + TT5 group).

As + ET + TT10 groups compared with As + TT10 group. The
MDA levels in the As + ET + TT10 group were lower signifi-
cantly than As + ET + TT5 group (all P = 0.001, Figure 4).

Considering PAB, higher levels were observed in the As
group compared with the C group (P = 0.001) as well as all
interventional groups (all P = 0.001). Comparing the inter-
ventional groups showed lower PAB in As + TT5 and As +
TT10 groups compared with As + ET group, in As + TT10, As
+ ET + TT5, and As + ET + TT10 groups compared with As +
TT5 group, in As + ET + TT5 and As + ET + TT10 groups com-
pared with As + TT10 group, in As + ET + TT5 and As + ET +
TT10 groups compared with As + ET group, and in As + ET
+ TT10 group compared with As + ET + TT5 group (all P =
0.001, Figure 5).

5. Discussion

Histological evaluation of the renal tissue of rats
showed that As increased MGMT, Cyt-C, MDA, and PAB and
decreased renal ATP, which confirmed the renal damage,
induced by As in rats. Therefore, the next comparisons
were made with As group, as a successful sample of re-
nal injury. This finding is consistent with previous stud-
ies, indicating nephrotoxicity and impaired renal function
induced by As in rats (19, 20). Clinical research has also

Gene Cell Tissue. 2023; 10(3):e131298. 3



Farokhi F et al.

C As

As +
 TT5

As +
 TT10

ET + As

As +
 ET + TT5

As +
 ET + TT10

8

6

4

2

0

C
yt

o
cr

o
m

-C
 (P

m
o

l/
m

L)

Figure 3. Cytochrome-C levels in the seven research groups (*** P ≤ 0.001, increased
significantly in comparison to the C group; ### P ≤ 0.001, decreased significantly
in comparison to the As group; δδδ P ≤ 0.001, decreased significantly in compari-
son to the As+TT5 group; βββ P ≤ 0.001, decreased significantly in comparison to
the As + TT10 and As + ET groups; εεε P ≤ 0.001, decreased significantly in compari-
son to the As + ET + TT5 group;εεε P ≤ 0.001, decreased significantly in comparison
to the As + ET + TT5 group).
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Figure 4. Malondialdehyde (MDA) levels in the seven research groups (*** P ≤ 0.001,
increased significantly in comparison to the C group; ### P ≤ 0.001, decreased sig-
nificantly in comparison to the As group; δδδ P ≤ 0.001, decreased significantly in
comparison to As + TT5 and As + ET groups;βββ P ≤ 0.001, decreased significantly
in comparison to the As + TT10 group).

shown the association of kidney injury with environmen-
tal exposure to As (21). This effect is speculated to be gen-
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Figure 5. Prooxidant-antioxidant balance (PAB) levels in the seven research groups
(*** P ≤ 0.001, increased significantly in comparison to the C group; ### P ≤ 0.001,
decreased significantly in comparison to the As group; ΦΦΦ P ≤ 0.001, decreased
significantly in comparison to the As + ET group; δδδ P ≤ 0.001, decreased signifi-
cantly in comparison to the As + TT5 group;βββ P ≤ 0.001, decreased significantly
in comparison to the As + TT10 and As + ET groups; εεε P ≤ 0.001, decreased signif-
icantly in comparison to the As + ET + TT5 group).

erated by ions replacing phosphates in cells and binding
to biological molecules to increase ROS (3). The increased
radical dimethyl As and decreased antioxidants result in
DNA damage, increased peroxidases and isoprostanes, and
increased levels of cellular MDA levels (2). Mitochondrial
complexes I and III, in the electron transfer chain, are sensi-
tive to the increased O2- ions and inhibition of succinate de-
hydrogenase. NAD(P)H oxidase disrupts the process of un-
coupling oxidative phosphorylation and causes damage to
the mitochondrial membrane, which results in the release
of Cyt-C, activation of miR-199a-5p, HIF-1α and COX-2, and
impairs DNA methylation (3).

In this study, two interventions were considered, ET
and TT. The five interventional groups were compared
to show the effect of each intervention alone and in
combination. The results showed that ET decreased re-
nal Cyt-C, MDA, PAB, and MGMT in rats exposed to As,
which indicates the favorable effect of exercise on oxida-
tive stress in the body, which is in line with previous in
vivo and in vitro studies (22, 23). As suggested, the ef-
fect of exercise on increased ATP levels and reduced Cyt-C,
MDA, and PAB release is induced by regulating the renin-
angiotensin-aldosterone system (24), reducing oxidative
stress in apoptotic TNF receptors (25), reducing Cyt-P4A,
increasing eNOS, activating NADPH oxidase (7), improv-
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ing fat metabolism, regulating minerals, and increasing
mitochondrial membrane stability (24, 26). The decrease
in ATP levels following exercise is also speculated to be
caused by the increased ADP/ATP ratio, which leads to in-
creased cell charge, followed by the activation of biological
mechanisms, which leads to increased nuclear transcrip-
tion pathways and DNA repair (7, 24, 26). The results of our
study are in line with another research, indicating modula-
tion of the increased MGMT by exercise (five sessions of ET
per week for eight weeks), decrease in Cyt-C, and increase
in ATP and cardiac PAB in rats poisoned with hydrogen per-
oxide (H2O2) (26). High-intensity interval training also in-
creased the expression of SOD and catalase and decrease re-
nal Tnfrsf1b in rats with renal impairment (25), which is in
line with the results of the present study. Others have also
shown that eight weeks of exercise can inhibit oxidative
stress and xanthine oxidoreductase activity, increased 20-
hydroxyeicosatetraenoic acid and Cyt-P4A, while it has no
effect on NAD(P)H in rats with salt-sensitive hypertension
(7). Although the parameters measured differ from that of
the present study, this study is in line with our results, con-
sidering the favorable effect of exercise on oxidative stress.

In addition to exercise, we also measured the solitary
and synergistic effect of another intervention, namely TT,
in two different doses to identify its effect on the studied
biomarkers of oxidative stress and the most appropriate
dose for this purpose. The results showed that TT5 and
TT10 increased ATP levels and decreased renal MDA, PAB,
and MGMT in rats, with a greater effect observed in the TT10
group compared with TT5. The main protective effect of
TT against nephrotoxicity may be related to the antioxida-
tive effects of this plant, namely inhibiting the release of
calcium and Cyt-C by reducing blood nitrogen-urea (BUN)
and creatinine, reducing KIM-1 and liver fatty acid-binding
protein (L-FABP), and increasing GSH expression (reduced
glutathione), catalase, and SOD in renal tubules, which im-
prove oxidative phosphorylation and increase ATP in re-
nal tissue (27). Activation of p38 mitogen-activated pro-
tein kinase (MAPK) also leads to activation of nuclear res-
piratory factor (NRF)1/2 that leads to increased expression
of DNA repairing genes (28). Researchers indicated in one
study that receiving 100, 200, and 300 mg/kg TT reduced
the kidney damage markers, in a dose-dependent manner
and enhanced the expression of antioxidants in the renal
tissue of rats with renal impairment (27). Although the
prescribed dose is much higher than that in our study, the
general results are similar, identifying the favorable effect
of TT on oxidative stress in the kidney of rats. In another
study, seven weeks of TT administration (5% of the body
weight) to laboratory rats increased the expression of SOD
and glutathione peroxidase (GPx) and decreased thiobar-
bituric acid, BUN, and creatinine in rats with renal impair-
ment (29). These results are also consistent with that of

the present study; however, the measured biomarkers dif-
fered. Moreover, another study showed that TT at a dose of
2,000 mg/kg increased p38 MAPK expression and antioxi-
dants and decreased damage to the renal nephrons (28).
These results are also consistent with the results of our
study, indicating the favorable effect of TT on renal dam-
age, most possibly related to the anti-oxidative effect of
this plant.

In addition, the evaluation of the synergistic effect of
exercise and TT showed that the combination of ET and TT
resulted in a greater effect on the measured parameters
(decreasing MGMT, Cyt-C, MDA, PAB, and increasing ATP),
as ET + TT5 had a greater effect than TT5 and TT10 alone.
Also, the higher dose of TT (10) resulted in the greatest ef-
fect, when combined with EE (EE + TT10). As discussed, ex-
ercise reduces exogenous oxidative stress, the mechanism
of which has been described earlier. Furthermore, the anti-
oxidative mechanism of TT has also been described. There-
fore, the combination of ET and TT results in synergistic ef-
fects on reducing apoptotic markers and oxidative stress.
Others have also shown that ET along with receiving 1,250
mg/kg TT increased insulin-like growth factor (IGF)-1 and
protects the skeletal muscle from injuries caused by stren-
uous exercise (13). It has also been demonstrated that the
interaction of ET and TT also improves body composition
and performance (30). These results are also consistent
with that of the present study, indicating the synergistic ef-
fect of ET and TT.

Besides the strengths and novelty of this research, it
had some limitations as well, including the figure, used
to measure the variables, as measuring the markers along
with pathological evaluations would result in more reli-
able findings.

5.1. Conclusions

The results of this study showed that ET and TT resulted
in the reduction of the oxidative stress biomarkers and an
increase in ATP, in renal tissue of rats with As-induced re-
nal damage, both alone and synergistically; a greater effect
was observed in a higher dose of TT and when combined
with ET. The significant effect of TT on reducing renal dam-
age in rats suggests this plant is a potent anti-oxidative to
be used in future clinical trials, preferably in combination
with exercise.
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