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Abstract

Context: Since most scientists tend to investigate live biological samples, there is inadequate data on efficient molecular techniques
for the anthropological sciences. In this short review, multiple methods were mentioned and compared to provide a brief insight
into the application of genomics and proteomics on the post-mortal specimen.
Evidence Acquisition: Through the use of proper keywords, the PubMed and Elsevier databases were selected for acquiring relevant
articles.
Results: During cell death, DNA and proteins degenerate, hence, it is difficult to perform molecular assessments efficiently.
Fortunately, with the aid of novel techniques, including uracil-N-glycosylase (UNG) and N-phenacylthiazolium bromide (PTB), we
could partly recover the damaged DNA, and by applying PTB-DTT and Qiagen kit, we could analyze the remaining DNA with high
efficiency. Nevertheless, there are countless gene sites for molecular studies, and the hypervariable region I (HVRI) of the D-loop
in mitochondrial DNA (mtDNA) and Y chromosome microsatellites (Y-STRs) are two potential sites for anthropological studies.
Finally, we could utilize proteomics in the remaining mineralization samples of a corpse to study protein variation and different
phenotypes in human beings.
Conclusions: Genomics and proteomics are two domains of molecular studies in which we can gather useful information about
the events which occur in a cell over time. These domains give us data about the Archeological and Anthropological sciences.
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1. Context

In this narrative review, we focused on finding
proper genomics and proteomics methods performed in
human anthropology and excluded other mathematical
techniques.

2. Evidence Acquisition

A hand search with the search query of ((anthropology
AND genomics) OR (anthropology AND proteomics))
was implemented in the Elsevier database in title,
abstract, and keywords with a total number of 39
results. Subsequently, articles with a publication
year equal to or less than 2000 were excluded
from the current research. Same strategic search
with search query of ((anthropology[Title/Abstract])

AND (genomics[Title/Abstract])) OR
((anthropology[Title/Abstract]) AND
(proteomics[Title/Abstract])) was implemented in the
PubMed database with total results of 61 articles. The
inclusion criteria were: High-impact articles, peer
review journals, and relevant subjects in regard to our
work. During the screening, 40 duplicates and 5 poorly
descriptive articles were found which were not meet our
inclusion criteria. Finally, a total number of 55 articles
were selected for this narrative review, which contains
original and reviews articles as well as one book.

3. Results

Genomics is the study of genes’ properties, including
function, evolution, and structure. The first genomics
study was performed on bacteria (1). Over time, this

Copyright © 2022, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

https://doi.org/10.5812/gct-131402
https://crossmark.crossref.org/dialog/?doi=10.5812/gct-131402&domain=pdf
https://orcid.org/0000-0003-3383-9710
https://orcid.org/0000-0002-8246-5631


Ariaei A et al.

discipline has grown and now includes a wide range of
research. Genomic studies face several problems when
performed on non-living cells containing degraded DNA
(2). The idea of implementing genomics in the ancient
DNA (aDNA) opens a window to the new molecular
techniques in archeological and anthropology sciences
(3). Moreover, proteomics, like genomics, consists of a
wide range of studies in the field of proteins. Today,
with the aid of proteomics, we can study a large variety
of proteins (more than 1000) which helps us to acquire
valuable information (4).

The science of archaeology deals with the study of
past handmade materials, while anthropology deals with
the study of human behavior and social interactions. In
these two fields of study, researchers use mummies to
obtain archaeological and anthropological data (5). In the
archeological and anthropological sciences, bones play
an important role in characterizing multiple parameters,
including age and gender (6). One of the hallmarks
to determine the age and gender of the mummies are
pelvis and skull volume (7); however, new mathematical
methods, the wavelet transform and Fourier transform
on the supraorbital margin, and frontal sagittal arcs can
be used to determine the gender of human remains
using a three-dimensional model of the skull in Geomagic
Studio 12.0 software (8). Besides, there are many clues
to conducting an anthropology investigation listed as
follows.

3.1. Markers in Anthropology and Archeology Sciences

In anthropology and archeology, researchers measure
specific markers to obtain the required data for their
research rather than performing high-cost methods,
including whole genome sequencing or multiple mass
spectrometry assessments. Common anthropology and
archeology markers are as follows:

(1) Ancestry-informative markers (AIMs) can be used
in the genetic aspect of anthropology, and it takes into
account multiple population factors, including races and
genome admixture. This gene marker has been reported to
contain wider sequence variation among different human
races (9).

(2) Ancient DNA markers are derived from aDNA, which
allows us to study past events like migration. In addition,
theories regarding historical events as well as human
evolution can be evaluated based on aDNA (10).

(3) Adaptation markers, as the name suggested, signify
biological responses to a natural phenomenon with the
aim of adaptation to the new environment, which reflects
human history (11, 12).

(4) Forensic DNA phenotyping are highlighted for their
information provided beyond the human biological state

and disclose human phenotypes, clothing, traditions, and
other traits with the aid of biological and nonbiological
clues (13).

(5) Gene markers provide a wide range of data
by dividing genes into particular subunits, which are
known to be more expressed in specific areas or actions.
Accordingly, we have Hair markers (TCHH, WNT10A, EDAR,
SLC24A5, HERC2, TYR, IRF4, SLC4A2, KITLG, LEF1, TYRP1,
MC1R, AR/EDA2R, TARDBP, HDAC9, AUTS2, SETBP1, PAX1/
FOXA2, WNT10A, IRF4), circadian cycle (RGS16 (RNASEL),
VIP, PER2, HCRTR2 (OX2R), RASD1, PER3 (VAMP3), FBXL3
(CLN5)), ear-related marker (EDN1, FGF3, ABCC11), memory
(DRD2, ANKK1), language (FOXP2, CNTNAP2), endurance
(ADRB1, ADRB2, ADRB3) (10).

3.2. Post-mortal DNA

In non-living cells, DNA participates in numerous
oxidation and hydrolysis reactions, resulting in the
cleavage of DNA into smaller fragments (100 - 200 base
pairs) (14). In that case, molecular techniques used to
detect DNA become useless. DNA fragments encounter a
wide range of changes which are characterized by baseless
sites, miscoding lesions, and cross-links (interactions
between DNA and proteins or sugars) (15, 16). Unlike the
former hypothesis, DNA lesions’ site distribution patterns
accumulate mainly in the sites named hot spots where
repeated sequences are located. These sites can be found
in either aDNA or mitochondrial DNA (mtDNA) (17).

Environmental conditions play an important
part in DNA degeneration. Hypertonic solutes (like
high-concentration sodium chloride) have been stated
to decelerate DNA degradation in non-living cells.
Nevertheless, even under suitable conditions without
hazardous compounds, DNA cannot fully survive for more
than 1 million years (15). In the current condition under
which humans can live, by aiding kinetic calculations, the
studies suggested a maximum length of 100 thousand
years for a 100 - 500 DNA fragment to survive, although
the mean calculation suggested a much shorter period of
10 thousand years due to hydrolytic damages (18).

3.3. Genomics

We need to cope with DNA changes over time
to provide a clear portrayal of past events based on
post-mortal DNA. Uracil-N-glycosylase (UNG) is one of
the methods used to retrieve post-mortem modification
and increase the reliability of results. The mechanism of
action of UNG is based on the elimination of deamination
products of cytosine from the main sequence. By
performing this method, we could also examine the
origins of sequence variation (19).
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N-phenacylthiazolium bromide (PTB) is another
method in which it could overcome intermolecular
cross-links caused by enzymes like advanced glycosylation
end products (20). The PTB-DTT, and Qiagen kit are the
methods to produce high-quality DNA from fragments
extracted from specimens; however, PTB-DTT is thought to
perform even better quality compared to the Qiagen kit
(21). At last, applying a chemical substrate (PTB) to DNA had
a desirable outcome in the research on Neanderthal DNA.
Chemical treatment continued to be used as a satisfactory
alternative to complicated aDNA retrieval methods (22).

Hypervariable region I (HVRI) of the D-loop in mtDNA
is a key marker for anthropological and genomics studies.
PCR methods are used to amplify short segments into
complete sequences (23). Using mtDNA instead of aDNA
has several advantages. First, aDNA mostly degenerates
into small fragments about 100 bases long, which makes it
excruciating work to sequence it completely (24). Second,
cytosine (C) is commonly converted to uracil (U) because
of deamination, which mimics thymine (T) properties in
molecular interaction. Likewise, guanine (G) can convert
to adenine (A) in aDNA. These changes are hardly detected
by current materials and techniques. Third, aDNA may
contain exogenous DNA sources from organisms that live
in soil or body microbes (25). This exogenous DNA causes
multiple errors in DNA sequencing. Although, damages
in aDNA, as mentioned previously, are not randomly
distributed and can be identified due to the damage
patterns. Current methods in DNA sequencing utilize a
DNA library to synthesize short sequences called adapter
sequences, which subsequently stick to the end of the
short fragments of the sample. Finally, the whole sample
can be amplified with primers (26).

Purify aDNA has been long known as a challenging
procedure (27). Although novel techniques provided
more information about contaminated DNA, the aDNA
still contains a tiny portion of the total sample (estimated
at 1.3%). With this small value, conducting research on
aDNA has multiple challenges (28). Besides, analyzing
data accuracy and selecting appropriate DNA sites play
important roles in gathering the necessary information
for research.

One of the strategies in DNA analysis is to scrutinize
sequences for possible mutations, which are known as
single nucleotide polymorphisms (SNPs). These sites
provide valuable information about population diversity,
migration, and admixture. By using these data, we could
illustrate a timeline in which the population split occurs
(29).

Another site for genomics studies is the human
Y chromosome since the haploid state and existence
of a wide range of markers make it a potential tool

for anthropology studies (30). Population studies are
performed at two main sites on the Y chromosome,
including Y chromosome microsatellites (Y-STRs) and
SNPs. In addition, the Y chromosome contains an
abundant transposable element called Alu element and a
gene marker named yes-associated protein (YAP), which
are useful in population studies (31, 32). Moreover, this
chromosome is thought to contain multiple mutations
from a long time ago, which makes it a potential site for
genomics studies (33, 34).

Microsatellites have long been employed in multiple
investigations to prove evidence of illegal actions in the
judiciary. Accordingly, various commercial testing kits
and multiplexes were developed to facilitate the detection
of Y-STRs. Two of them are listed as Powerplex Y 23 by
Promega (35) and Y Filer Plus by Thermo Fisher Scientific
(36). Before developing Y-STRs detecting kits, anthropology
studies were mainly based on conventional methods like
SNPs, but nowadays, Y-STRs software packages, including
Nevgen and Whit Athey’s Haplogroup Predictor Tool, are
widely used for genomics analysis (37).

Besides Y-STRs, other sites may be probed for
anthropology and ethnic studies, such as the AZFc region
or DYS448, which are evaluated for a possible mutation (38,
39). One of the molecular methods commonly employed
in anthropology is PCR multiplex (Genderplex) (40).

After acknowledgment of genetic markers and
techniques, it’s noteworthy to consider archaeological
methods for DNA extraction from silica materials
like bones and teeth, which are commonly used for
extracting aDNA (41) (Figure 1). Two main methods are
widely known to be applied to mineralization materials,
phenol/chloroform/isoamyl-alcohol (PCI) (42) and the
spin filter method (SF) (43). Moreover, for DNA extraction
in demineralization samples, the QIAamp DNA Blood Maxi
kit (Qiagen, Hilden, Germany) is utilized with either PCL or
SF methods (44, 45). The final way to acquire aDNA is from
Keratinous source materials like hair and skin, although
these sources are scarce in post-mortal bodies (46).

3.4. Proteomics

Currently, mass spectrometry is the most efficient
method for proteomics studies. However, there are several
limitations in performing this method since it demands
high-performance instruments and powerful funding
resources (47). There are few numbers of proteins that are
resistant to the degradation process in non-living cells. In
archaeological studies, collagen type 1 (COL1) is commonly
extracted and purified from bone for proteomics studies.
This protein has a significant amount of hydrogen bonds,
and by forming bundles and fibers, it’s resistant to several
increasing hazards (48). Another part used in proteomics
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Figure 1. Graphic abstract of the role of genomics and proteomics in the anthropological sciences

studies is enamel, which is derived from the tooth. It
consists of multiple proteins (up to 10 types). One is
called amelogenin, with 2 isoforms encoded at 2 different
locations on X and Y chromosomes (49). For proteomics
studies, sodium dodecyl sulfate (SDS) is mainly used along
with gel electrophoresis. In this method, the protein just
deposits a murky sign in electrophoresis, which differs
from the well-resolved and distinct bonds of proteins
derived from living samples (50, 51).

In post-mortem conditions, proteins cleaved at the
carboxyl side of asparagine (Asn) and glutamine (Gln) into
multiple fragments (52). Subsequently, these fragments
encounter several changes, including deamidation and
nonenzymatic reactions (53). Protein samples derived
from corpses contain ancient proteins and several
contaminants which aren’t thought to participate in
deamidation reactions. Since a wide range of proteins

is reported to undergo deamination in non-living cells,
human proteins could be distinguished from bacteria
proteins by measuring the degree of protein deamination
(54, 55).

4. Conclusions

DNA strands in a human contain billions of bases.
Therefore, it is impossible to analyze all the remaining
aDNA bases from the corpus. In this case, researchers
perform molecular assessments on a specific number
of genes that have been reported to have greater
variety among different races. The HVRI sequences in
mtDNA and Y-STRs in the Y chromosome are commonly
used to distinguish several properties like gender and
anthropological variables. Moreover, the AZFc and DYS448
regions of Y-STRs are analyzed to identify the mutation
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pattern among different tribes. Finally, conducting
research on remaining post-mortal proteins provides
valuable insights into phenotype variation among
different generations. Scientists tend to study proteins
that are restricted to the mineral matrix. Since the
proteins that exist in bone have higher stability compared
to proteins located in the abdomen part, the mineral
matrix has a protective role against the degeneration
of proteins. This fact highlighted the environmental
condition as an inevitable variable for protein protection
and genome stability (Figure 1).
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