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Abstract

Background: Spermatogonial stem cells (SSCs) transmit genetic information to the next generation. For the successful
transplantation of these cells, the culture medium of these cells must be optimized.
Objectives: This study investigated the natural antioxidant of grape seed extract (GSE) in comparison to vitamin C in the culture
medium of SSCs.
Methods: A Soxhlet extractor was used to prepare ethanolic and acetonic extracts, and the Clevenger apparatus was used to prepare
aqueous extracts of grape seeds. Then, their antioxidant capacities were determined using the DPPH method. The SSCs were
extracted from lamb testicular tissue by a two-step digestion method, and different concentrations of GSE and vitamin C were
investigated for survival, colony formation, and expression of apoptotic-related genes.
Results: The results showed that the acetonic extract in the concentration of 400µg/mL showed about 90% antioxidant properties
based on the DPPH test; nevertheless, the aqueous and ethanolic extracts had only 50% of their antioxidant properties at this
concentration. The acetonic extracts significantly decreased the viability of SSCs without any colony formation when used in a
culture medium. The highest survival rate was obtained from the ethanolic extracts of grape seeds at the concentration of 50µg/mL,
and a significant difference was obtained with ethanolic extracts (100 to 1000 µg/mL) (P < 0.05). The viability of SSCs treated with
vitamin C (50 µg/mL) was significantly higher (P < 0.05) than the control and 5 - 25 µg/mL of vitamin C groups.
Conclusions: Aqueous, ethanolic, and acetonic extracts of grape seeds should not be used in the culture of SSCs. However, the use
of 25 - 50 µg/mL of vitamin C is recommended in the culture of SSCs.
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1. Background

Spermatogonial stem cells (SSCs) remain in
spermatogenesis during their lives. The SSCs are
characterized by undergoing both differentiation and
self-renewal of cell divisions, resulting in the production
of haploid sperm (1). The mechanism underlying SSC
proliferation is not yet known. The culture environment
is a static system in vitro, and the cells cultured require
numerous nutrients and show a higher concentration of
reactive oxygen species (ROS) (2). The ROS is involved in
apoptosis signaling processes in organelles of the cells,
such as mitochondria, under the regulation of Bcl-2 family
proteins (3). Lipid peroxidation is caused by free radicals
and results in DNA breaks and oxidization of proteins and

important molecules. Therefore, the need for antioxidants
increases with exposure to ROS (4).

The grape has a significant number of nutritional
antioxidants, such as polyphenols and anthocyanins.
The grape is rich in oligomeric proanthocyanidins, as
the most beneficial groups of plant flavonoids, which
have several health-promoting effects, including
increasing intracellular vitamin C concentrations,
decreasing capillary fragility and permeability, and
scavenging free radicals and oxidants (5). Grape seed
proanthocyanidins scavenge hydroxyl radical (OH)
dose-dependently (6). Importantly, grape seed extract
(GSE) has more anti-oxidative effects than vitamins C and E
andβ-carotene, regulating cell signaling pathways related
to apoptosis (7). Additionally, 55% of the procyanidins
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in grape seeds have over five monomer units (8).
Cinnamic acids and benzoic acids as phenolic acids
(9) and flavonoids, including anthocyanins, ellagic acid,
quercetin, kaempferol, myricetin, proanthocyanidins, and
catechins, are considered the most important components
of grape that have antioxidant properties (10).

Ascorbic acid, or vitamin C, as a water-soluble vitamin,
has been associated with fertility for many years (11). It is an
essential molecule that plays a vital role in many biological
processes, including immune response and antioxidant
activity. Vitamin C plays significant roles in amino acid
and collagen synthesis, cholesterol metabolism, and DNA
protection by acting as a free radical scavenger (12). It
is also involved in many biological activities, including
enzymatic reactions catalyzed by dioxygenases that use
Fe2+ and 2-oxoglutarate as co-substrates (13). Improving
the culture media with sufficient vitamin C amounts leads
to a more effective generation of pluripotent stem cells,
somatic cells, SSCs (14), and somatic cell nuclear transfer
animal embryos (3). Following the addition of vitamin C
to the culture medium at certain concentrations, it can
act as a growth promoter and increase DNA synthesis
and cell proliferation. Nonetheless, significantly high
vitamin C levels are cytotoxic and inhibit proliferation and
apoptosis (15). Specifically, vitamin C can regulate stem cell
identity/behavior, affecting differentiation pluripotency
and self-renewal (14).

2. Objectives

This study used the antioxidant properties of grape
seed extract (GSE) in comparison to vitamin C to increase
the efficiency and function of ovine SSCs. For this purpose,
the effects of different concentrations of GSE and vitamin
C on the viability and colony formation of SSCs and the
expression of apoptotic genes were studied.

3. Methods

3.1. Chemical Agents

The chemicals and culture media were supplied from
Sigma-Aldrich (USA), and the plasticware was obtained
from Falcon (Paignton, UK) unless stated otherwise.

3.2. Preparation of Grape Seed Extract

Grape seeds were separated from stems and skins
manually and washed and dried in the air in a thin layer
at ambient temperature for some days. Dried grape seeds
were ground to a fine powder with a grinder. To remove
fatty matter, it was treated with hexane for 6 hours in a
Soxhlet extractor. The extraction of the powder (40 gr)

was performed in a Soxhlet extractor for 10 hours with
extractants (150 mL), such as ethanol and acetone. The
aqueous extract was prepared using steam distillation (1:5
herb/water, in w/v ratio) for 4 hours by a Clevenger device.

3.3. Determination of GSE Antioxidant Capacity by DPPH

The free radical-scavenging capacity of the extracts
was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH)
following the method described by Ahmed et al. with
some modifications (16). In brief, 0.1 mM DPPH in ethanol
was prepared, and the solution (2.85 mL) was mixed with
0.15 mL of various levels (5, 15, 25, 50, 100, 200, 400, 800,
1000, and 2000 µg/mL) of aqueous, ethanol, and acetone
extracts. It was then shaken strenuously and kept at room
temperature for 30 minutes, and its absorbance was read
at 517 nm by a spectrophotometer.

3.4. Enzymatic Isolation and Culture of SSCs

The Agricultural Institute of Animal Ethics, Care, and
Use of Iranian Research Organization for Science and
Technology (IROST) approved the research protocol. Testes
were collected after the slaughter and transported to a
laboratory on ice within 2 hours at 20 - 35°C to isolate
SSCs. After washing three times with deionized water
and normal physiological saline, they were 10 times
sprayed with 70% ethanol. Supplemented with 50 µg/mL
gentamicin and then initial tunica albuginea removal,
the testes were cut into small pieces (6 - 10 gr) to digest
using an enzymatic treatment in two steps, according
to Izadyar et al. (17). In the first step of enzymatic
digestion, 1 µg/mL hyaluronidase type II, 1 µg/mL trypsin
(Inoclon), 5 µg/mL DNase, and 1 µg/mL collagenase were
used. A shaker incubator (150 RPM cycle) was used for
incubation for 40 minutes at 37°C. After the first step of
enzymatic digestion, the cells were washed three times
using Dulbecco’s phosphate-buffered saline (DPBS). For the
second enzymatic digestion, the pellet was suspended in
Dulbecco’s Modified Eagle Medium (DMEM), containing 1
µg/mL hyaluronidase type II, 5 µg/mL DNase, and 1 µg/mL
collagenase. Then, incubation was conducted in a shaker
incubator (150 RPM cycle) for 40 minutes at 37°C.

3.5. Enrichment of SSCs

The supernatant containing SSCs, myeloid cells, Sertoli
cells, and other cells contaminating the seminiferous
tubular tissue underwent filtration through nylon mesh
filters of 80 and then 60 µm to enrich the SSCs. Then,
the filtered cells were added to Petri dishes (60 mm)
covered by lectin-bovine serum albumin (BSA), according
to Jafarnejad et al. (18), developed by dissolving lectin
(5 µg/mL in DPBS) from Datura stramonium agglutinin
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in DPBS. The dishes were kept for 2 hours at room
temperature, followed by washing using BSA (0.6% BSA
in DPBS). For coating BSA, the dishes were also held at
ambient temperature for another 2 hours. The cultures
were incubated for 5 - 6 hours at 37°C in a CO2 incubator (5%
CO2 in air). Then, the remaining medium was transferred
to a 15-mL tube. The unattached cells in the medium
were collected through centrifugation at 1000 rpm for 5
minutes, and the pellet was re-suspended in DMEM.

3.6. Preparation of Feeder Layers

The feeder layers were prepared from the Sertoli cells.
The cells were cultured with DMEM treated with 10% fetal
bovine serum (FBS), and the cell suspension was placed on
lectin-coated dishes followed by incubation for 2 - 3 days
at 37°C and 5% CO2 to develop and generate a confluent
monolayer. The cells underwent sub-culturing in a culture
flask for propagation, following dissociation with 0.25%
trypsin-EDTA. After incubation, the non-adhering cells
were discarded, and the cells attached to the bottom of
the petri dish were Sertoli cells which were treated with
mitomycin C (10 µg mL-1) for 3 hours. Washing of the
cultures was performed five times using DPBS and DMEM
treated with 10% FBS to remove any traces of mitomycin
C, and the attached cells were used as feeder cells for SSC
culture.

3.7. Mitochondrial Function Assessment

The MTT assay has been most widely used to determine
cell viability and cell proliferation (19). It works according
to the potential of the mitochondrial dehydrogenases
to metabolize MTT to formazan, which occurs for
functionally intact mitochondria. In brief, the cells
were seeded into plates of 96 wells followed by treatment
using different concentrations of aqueous, ethanolic,
and acetonic extracts (50, 100, 200, 400, 800, and 1000
µg/mL) of GSE and (5, 10, 25, 50 and 100 µg/mL) vitamin
C. After incubation, the cell medium was changed with
a fresh one (100 µL/well), and MTT solution (50 µL; 0.5
mg/mL in PBS) was added. After the incubation of the
plates for 4 hours at 37°C, generated formazan crystals in
DMSO (100-µL) were added to each well. The formazan
level was measured using optical density at 570 nm. For all
treatments, a coated dish with 96 wells without SSCs was
applied to remove the Sertoli cell effect. The control group
contained stem cells without treatment. The positive
control (control +) group was without using cells.

3.8. Ribonucleic Acid Isolation and Real-time Polymerase Chain
Reaction

The TRIzol method was used to isolate total ribonucleic
acid. It was reverse-transcribed to cDNA with Maloney

murine leukemia virus reverse transcriptase and oligo-DT
priming. The changes in the gene expression were
studied by real-time polymerase chain reaction (PCR).
The amplification procedure included pre-incubation for
FastStart polymerase activation at 94°C for 15 minutes and
then 40 cycles of denaturation at 94°C for 10 seconds,
annealing at 60°C for 15 seconds, and extension at 72°C
for 20 seconds. The housekeeping gene β-actin was the
endogenous control. Table 1 shows the primers and the
lengths of the amplified fragments for real-time PCR. The
comparative threshold cycle (∆∆CT) method was used to
analyze the data.

3.9. Statistical Analysis

The experiments were performed three times. The
values were expressed as mean ± mean squared error.
Quantitative data analysis was applied through SPSS
software (version 16; IBM, USA). The one-way analysis
of variance followed by Duncan’s multiple-range test
compared the mean values. The P-values less than 0.05
were regarded as significant.

4. Results

4.1. Antioxidant Capacity of GSE

The DPPH method was applied to determine the
antioxidant capacity of aqueous, ethanolic, and acetonic
extracts of grape seeds. The GSE was used with various
concentrations of 5, 15, 25, 50, 100, 200, 400, 800,
1000, and 2000 µg/mL. The extracts of acetonic grape
seeds in the concentration of 400 µg/mL showed about
90% antioxidant properties based on the DPPH test.
Nevertheless, the aqueous and ethanolic extracts had only
50% of their antioxidant properties at this concentration
(Figure 1).

4.2. Effects of GSE and Vitamin C on SSCs’ Viability

For this purpose, 50, 200, 400, 600, 800, and 1000
µg/mL of each of the aqueous, ethanolic, and acetonic
extracts of grape seeds and 5, 10, 25, 50, and 100 µg/mL of
vitamin C were used. The findings demonstrated that the
acetonic extracts of grape seeds could significantly
decrease the viability of SSCs (P < 0.05; Figure 2).
Additionally, different concentrations of the aqueous
extract negatively affected the viability of SSCs. However,
there was no significant difference between the 50 µg/mL
aqueous extract and the control (Figure 3). The highest
survival rate was obtained from the ethanolic extracts
of grape seeds at the concentration of 50 µg/mL, and
a significant difference with higher concentrations of
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Figure 1. Antioxidant capacity of aqueous, ethanolic, and acetonic extracts of grape seeds
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Figure 2. Effects of acetone extract of grape seeds on viability of spermatogonial stem cells
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Figure 3. Effects of aqueous extract of grape seeds on viability of spermatogonial stem cells
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Figure 4. Effects of ethanolic extract of grape seeds on viability of spermatogonial stem cells

Gene Cell Tissue. 2024; 11(1):e135750. 5



Zolfaghari K et al.

Table 1. Primers Used in This Study

Gene Annealing Temperature Amplicon (bp) Accession Number

BCL2 60 165 AY547260.1

F-5’GATGACTTCTCTCGGCGCTA3’

R-5’GACCCCTCCGAACTCAAAGA3’

BAX 60 176 GU731063.1

F-5’GTGAGACCTCTAACCCCACC3’

R-5’GGTCAGAGGTCATGAGGAGG3’

β-actin 60 187 U39357.1

F-5’ACCCAGCACGATGAAGATCA3’

R-5’GTAACGCAGCTAACAGTCCG3’

Abbreviations: R, reverse primer; F, forward primer.

ethanolic extracts was obtained (100 to 1000 µg/mL) (P <

0.05; Figure 4).
The viability of SSCs treated with vitamin C (50 µg/mL)

was significantly higher (P < 0.05) than the control and
5 - 25 µg/mL of vitamin C groups. Nonetheless, there was
no significant difference between the concentrations of
vitamin C in the 50 and 100 µg/mL groups (Figure 5).

4.3. Effects of Aqueous, Ethanolic, and Acetonic Extracts of
Grape Seeds and Vitamin C on SSCs’ Colony Formation

To clarify the effect of aqueous, ethanolic, and acetonic
extracts of grape seeds and vitamin C on ovine SSCs’ colony
formation, various concentrations of GSE (50, 100, 200,
400, and 800µg/mL) and vitamin C (25, 50, and 100µg/mL)
were added to the SSCs culture media. The increase in
the concentration of the aqueous and ethanolic extracts
significantly decreased the colony formation of SSCs (P <

0.05), and no colony formed when acetonic extracts or
higher concentrations of aqueous and ethanolic extracts
were used (800 and 400 µg/mL for aqueous and ethanolic
extracts, respectively). The colony formation of SSCs was
not affected by various concentrations of vitamin C, and
no significant difference was observed between different
concentrations of vitamin C and the control group (Figure
6).

4.4. Expression of Pro-apoptotic and Anti-apoptotic Genes
on Ovine SSCs Treated with Effective Doses of Vitamin C and
Aqueous and Ethanolic Extracts of Grape Seeds

This experiment investigated the expression of BCL2
(anti-apoptotic) and BAX (pro-apoptotic) genes based
on the optimum concentrations obtained by colony
formation treatments (25 µg/mL vitamin C, 50 µg/mL
aqueous extract, and 50 µg/mL ethanolic extract). The
expression of the BCL2 gene in vitamin C treatment

was significantly higher than the control and aqueous
and ethanolic extracts of grape seeds (P < 0.05). The
same expression was observed among different extracts
and control groups (Figure 7). As shown in Figure 8, no
significant difference was observed between different
groups in comparing BAX expression.

5. Discussion

The GSE is a rich source of antioxidants (10).
Inflammation, cell proliferation, and apoptosis are
affected by GSE, not only through antioxidant activity
alone but also by gene expression modulation (20).
The effect of GSE on male fertility has been reported.
Supplementation with GSE restores the spermatogenic
process and fertility damage due to toxic heavy metals
(21) and decreases oxidative stress-induced effects on
spermatogenesis in Swiss mice treated with cadmium
(22). A study by Bayatli et al. showed that GSE corrected
sperm motility, reduced oxidative damage, and blocked
apoptosis (23). The GSE exerted potent effects against
oxidative stress and inhibited the generation of
free radicals (24). Grape antioxidants can affect the
transcription factor nuclear factor kappa B by suppressing
its DNA-binding ability to suppress cancer cell invasion
(25). The GSE resulted in intracellular ROS accumulation as
its main mechanism for growth inhibition, apoptosis, and
DNA damage, significantly reversed by the antioxidant
N-acetylcysteine (26). Grape polyphenolic compounds
play an important role in protecting endothelial cells
against oxidative damage and reducing the inactivation of
nitric oxide radicals through the modulation of oxidation
enzymes, such as NADPH oxidase, superoxide dismutase,
and glutathione peroxidase (10).

In this study, the concentration of 50µg/mL of vitamin
C increased the survival rate, and the concentration
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Figure 5. Effects of various concentrations of vitamin c on viability of spermatogonial stem cells
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of 25 µg/mL increased the BCL2 gene expression in
SSCs. Culture supplementation with the appropriate
vitamin C concentration can protect cells against the
ROS damaging effects by inhibiting ROS generation,
regulating the expression of apoptosis-associated genes,
and promoting stem cell proliferation. Vitamin C can
activate anti-apoptotic signals and inhibit pro-apoptotic
signals in vitro. Antioxidants at a proper concentration
are capable of inhibiting apoptotic signals, activating
anti-apoptotic signals, and increasing the SSC population
and viability. They prevent SSCs from damaging their
cellular structure and apoptosis through a decrease in the
level of oxidative stress, as their well-known and innate
characteristics (18).

Recent studies also demonstrate that vitamin C is
associated with epigenetic reprogramming (27). Suitable
vitamin C doses blocked ROS generation and regulated
the apoptosis signaling pathway (28). Antioxidants have
a possible mediating role in the expression of many
factors associated with cell apoptosis, such as Bcl2 (29).
However, vitamin C acts as a growth promoter to improve
cell proliferation and synthesis of DNA and is protective
against ROS’s detrimental effects (15).

5.1. Conclusions

Based on the results of this study, the aqueous,
ethanolic, and acetonic extracts of grape seeds should not
be used in the culture of SSCs. Nevertheless, the use of 25
- 50 µg/mL of vitamin C is recommended in the culture of
SSCs.
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