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Abstract

Background: There appears to be a relationship between high-fat diet (HFD), inactivity, obesity, and many diseases. The effects of
aerobic exercise (AE) on the improvement of oxidative stress have been confirmed, and the antioxidant effects of bitter orange peel
(BOP) have been identified.
Objectives: This study aimed to explore the synergistic effects of 4 weeks of AE and BOP extract consumption on oxidative
biomarkers and the Nrf2-Keap1 signaling pathway in the quadriceps tissue of male rats fed an HFD.
Methods: In this experimental trial, 30 male rats were randomly divided into 5 groups: (1) control-normal diet (CO-ND), (2) CO-HFD,
(3) AE, (4) BOP, and (5) interaction of AE and BOP (AE-BOP). The BOP group received 60 mg (per kg of body weight) of BOP extract daily
during the intervention period. The AE program with moderate intensity was implemented for 4 weeks, 5 days a week.
Results: The nuclear factor erythroid 2 (NRF2) gene expression was significantly increased in the AE and AE-BOP groups, but this
increase was not significant in the BOP group. The decrease in the KEAP1 gene expression in the studied groups was not significant.
A significant decrease in MDA and a significant increase in the activity of superoxide dismutase (SOD) and catalase (CAT) enzymes
and the glutathione peroxidase (GPX) gene expression were observed in the studied groups.
Conclusions: Aerobic exercise and BOP reduced the oxidative stress caused by HFD by regulating the NRF2-KEAP1 signaling pathway.
Therefore, these two interventions are recommended in the conditions of HFD.
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1. Background

Studies have shown that regular physical activities,
especially aerobic exercises (AE), can prevent the early
occurrence of many chronic diseases related to obesity,
such as diabetes, cardiovascular diseases, hypertension,
dyslipidemia, osteoporosis, and depression (1, 2). A
mechanism by which AE exerts its favorable health effects
is the improvement of antioxidant defense capacity
and the reduction of reactive oxygen species (ROS) (3).
Although ROS production increases during intense
physical exercise, the improvement and development of
the antioxidant defense system are created parallel to
this increase, protecting the tissues against the damage
caused by ROS (1, 2). However, increased levels of ROS
and low activity of antioxidant enzymes, including

superoxide dismutase (SOD), glutathione peroxidase
(GPX) and catalase (CAT), are considered indicators of
oxidative stress (4, 5). Studies confirm that oxidative
stress plays a role in obesity-related complications (6).
Recent research shows that ROS can promote muscle
adaptations to physical exercise (2, 7). The adaptation
process in skeletal muscles is a functional outcome of
the intensity and repetition of stimulation, which affects
several events and leads to the activation or suppression
of specific signaling pathways. Therefore, it regulates
gene expression and protein synthesis or degradation (2,
8). The main pathway of cellular protective regulators
to endogenous and exogenous stresses caused by ROS is
the nuclear factor erythroid 2 (NRF2) transcription factor
signaling protein, which can also bind to the inhibitory
protein rich in cysteine residues (KEAP1). In fact, the
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NRF2-KEAP1 signaling pathway is an antistress mechanism
that maintains cellular homeostasis (2, 9, 10). Studies
report that regular aerobic physical activity in rodents
increases NRF2 in skeletal muscles, which can regulate the
expression of many antioxidant enzymes (9-11). Another
research revealed that Nrf2 not only has an antioxidant
effect but also plays an important role in regulating
glucose and lipid metabolism in obesity conditions (12).

In fact, when ROS production is not enough or
excessive, ROS-mediated signaling and adaptation to
physical training are impaired. Evidence shows that Nrf2
deficiency can increase insulin resistance, adipogenesis,
and adipocyte differentiation. Overexpression of the
Nrf2 gene can also cause insulin resistance under certain
conditions (12).

Antioxidant supplements increase the expression
of antioxidant enzymes, which include enzymes
involved in glutathione synthesis, through regulation
of the NRF2/KEAP1 pathway (13, 14). Some studies have
demonstrated that these supplements may help with
weight loss and recovery after exercise (15-23). Therefore,
the use of exogenous antioxidants may help delay muscle
fatigue and improve endurance performance (24).

Bitter orange peel (BOP) extract can be considered
a suitable source of polyphenols because it contains
different types of flavonoids with different concentrations.
Polyphenols are the most abundant antioxidants in the
human diet. Evidence shows that polyphenol supplements
have a great ability to positively affect redox homeostasis
and improve the physiological and physical functions of
skeletal muscles. The benefits of these compounds are due
to their antioxidant and anti-inflammatory properties,
their impact on transcription factors, and regulation
of the activity of enzymes that adjust the expression of
proteins (25). Evidence also emphasizes the essential role
of polyphenols in strengthening the antioxidant defense
system and stimulating the expression of antioxidant
enzymes through NRF2 signaling pathways (26). In
fact, polyphenols activate Nrf2 and not only inhibit
ROS production but also degrade Keap1 and regulate
the Nrf2-KEAP1 signaling pathway (27). The results of a
study showed that citrus flavonoid therapy improves
vascular function by reducing circulating inflammatory
biomarkers and stimulating nitric oxide production.
In this way, blood flow to active muscles increases,
and fatigue-related metabolites are quickly removed,
improving exercise tolerance and muscle recovery
mechanisms (13).

Bitter orange peel also contains an alkaloid
phenylethylamine (Citrus aurantium L), which is rich
in p-synephrine (28). P-synephrine has an adrenergic
effect and helps regulate blood glucose, as well as

insulin and triglyceride balance. Therefore, using
p-synephrine or products containing p-synephrine,
along with low-to-moderate-intensity exercise, can help
with weight loss (29). Recently, Gutierrez-Hellin and Del
Coso showed that p-synephrine can increase fat utilization
during submaximal AE. Therefore, this supplement has
become a widely used substance to reduce body fat levels
(30). Research indicates that citrus flavonoids can control
caloric intake versus consumption and regulate lipid
metabolism, and their use as a safe and natural alternative
to treat obesity is currently under investigation (31).

In addition, antioxidant supplements at high
doses can have dual effects on inflammation. In this
way, antioxidant levels can be improved through the
consumption of exogenous antioxidant supplements.
Vitamin C and polyphenols sometimes act as pro-oxidants
and can reduce the hormetic response to endurance
exercise (32). Some studies also report that supplements
reduce adaptation after physical activity (33-36). Therefore,
there is a need to measure the levels of oxidative stress and
specific food supplements consumed by athletes based on
the type, dose, and duration of supplement use.

2. Objectives

The effect of AE and BOP extract on the state of oxidative
stress biomarkers of skeletal muscle tissue is not known;
therefore, this study aimed to investigate the effect of
AE and BOP extract on oxidative biomarkers and the
Nrf2-Keap1 signaling pathway in the quadriceps of male
rats fed high-fat food.

3. Methods

3.1. Feeding the High-Fat Food

A normal diet in the form of pellets was procured from
Behparvar Company (Karaj, Iran) for laboratory animals.
The normal food contains crude protein of 20.50 - 19.50%,
fat 3.5 - 4.5%, fiber 4 - 4.5%, calcium 0.95 - 1%, phosphorus
0.65 - 0.7%, salt 0.5 - 0.55%, lysine 1.15%, methionine 0.33%,
threonine 0.72%, tryptophan 0.25%, and energy (mJkg-1)
16.16 - 17 (37). For obesity induction, 5% cholesterol,
20% palm oil, and 0.25% cholic acid were added to the
standard food as a high-fat diet (HFD) (38). The HFD was
administered to all the [except for the control-normal diet
(ND) group].

3.2. Animals

In the preclinical trial, 30 adults male Wistar rats,
20 weeks old, weighing approximately 300 to 350
g, were purchased from the Pasteur Institute of Iran
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(Tehran, Iran). After the rats were familiarized with the
laboratory environment, they were randomly divided into
5 groups: (1) control (CO)-ND, (2) CO-HFD, (3) HFD-AE, (4)
HFD-receiving BOP extract, and (5) HFD-AE-BOP.

3.3. Aerobic Exercise Program

For familiarization with training, the rats in the
desired groups were trained to run on a treadmill for
rodents at a speed of 9 m/min for 20 minutes a day
(including 5 minutes for warming up, 10 minutes of the
main training at the mentioned speed, and 5 minutes to
cool down) and were placed there for 5 days. After the
familiarization period, moderate-intensity training was
performed for 4 weeks, 5 days a week. On the first day
of training, the rats were trained for 10 minutes on a
treadmill at a speed of 16 meters per minute (m/min).
During the test period, the speed of the treadmill was
gradually increased from 16 to 26 m/min. To start the
training, they warmed up for 5 minutes at a speed of 7
m/min and cooled down for 5 minutes at a speed of 5
m/min after the main training.

3.4. Bitter Orange Peel Extract

The supplement used in this research was BOP extract
with a special formulation prepared by the Medicinal
Plants Research Institute (Karaj, Iran). The supplement
prepared in a liquid form was dissolved in distilled water
and applied by the gavage method at a dose of 60 mg/kg
body weight of rats for 4 weeks, 5 times a week.

3.5. Weighing and Tissue Removal

Forty-eight hours after the end of the AE period and
taking the BOP extract supplement, all the rats were
fasted for 8 - 10 hours and weighed before the tissue
removal. Rats in all the studied groups were anesthetized
using ketamine-xylazine (100 mg/kg) and underwent
surgery after complete anesthesia to investigate the
oxidative changes in the quadriceps tissue. The tissue of
the quadriceps was isolated for further measurements,
cleaned by washing with phosphate-buffered saline (PBS),
and placed inside a coded 2 mL microtube. The microtube
was transferred into a nitrogen tank and then kept in a
freezer at -80°C until cell analysis.

3.6. Statistical Method

All the data were reported using standard deviation
(SD) and mean. Via a split-plot analysis of variance,
the main effect of AE, the main effect of BOP, and the
interaction of AE and BOP (AE-BOP) on the outcomes were
tested for the independent groups. To determine the
effect of HFD on the outcomes, t-tests for the independent

groups, ND and HFD groups were compared. Then, the
difference between the AE-BOP, AE, and BOP groups, and
the difference between AE and BOP groups, were compared
pairwise using a one-way analysis of variance. When a
significant difference was observed, Bonferroni’s post-hoc
test was used. The significance level for all the tests was P =
0.05.

4. Results

High-fat diet significantly reduced the activity of SOD
(P = 0.001), CAT (P = 0.002), GPX (P = 0.024), and NRF2 (P =
0.005) and significantly increased the MDA concentration
(P = 0.001) and KEAP1 gene expression (P = 0.011; Figure
1A-F).

Aerobic exercise significantly increased the SOD
enzyme activity of the quadriceps (F = 30.00, P = 0.001,
η = 0.600). Bitter orange peel had a significant effect on
the SOD enzyme activity of the quadriceps (F = 9.00, P =
0.007, η = 0.310). The AE-BOP significantly affected the
SOD enzyme activity of the quadriceps (F = 7.17, P = 0.014,
η = 0.264). Aerobic exercise-bitter orange peel also had a
significant effect on the SOD activity of the quadriceps.
This shows that these two interventions strengthened
each other’s effect on the activity of this enzyme. The
level of SOD enzyme activity in the AE-BOP group was
significantly higher than in the AE (P = 0.004), BOP (P
= 0.001), and CO-HFD groups (P = 0.000). However, no
significant difference was observed between AE and BOP
groups (P = 0.571; Figure 2A).

The CAT enzyme activity of quadriceps significantly
increased in AE (F = 97.06, P = 0.001, η = 0.829), BOP (F =
30.42, P = 0.001, η = 0.603), and AE-BOP (F = 23.55, P = 0.001,
η = 0.541) groups. The CAT enzyme activity in the AE-BOP
group was significantly higher than in the AE (P = 0.001),
BOP (P = 0.001) and CO-HFD (P = 0.001) groups. The CAT
enzyme activity in the AE group was significantly higher
than in the BOP group (P = 0.037; Figure 2B).

The GPX gene expression of quadriceps significantly
increased in AE (F = 12.23, P = 0.002, η = 0.380), BOP (F =
10.46, P = 0.004, η = 0.343), and AE-BOP (F = 4.78, P = 0.041,
η = 0.193) groups. The expression of the GPX gene in the
AE-BOP group was significantly higher than in the CO-HFD
group (P = 0.001). No significant difference was observed
between the AE-BOP (P = 1.000) and BOP groups (P = 1.000).
Besides, no significant difference was found between AE
and BOP groups (P = 1.000; Figure 2C).

The MDA concentration of quadriceps significantly
decreased in the AE (F = 33.90, P = 0.001, η = 0.629), BOP (F =
10.54, P = 0.004, η = 0.345), and AE-BOP (F = 4.50, P = 0.047,
η = 0.184) groups. The concentration of MDA in the AE-BOP
group was significantly lower than in the CO-HFD group

Gene Cell Tissue. 2024; 11(1):e138980. 3
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Figure 1. Changes in superoxide dismutase (SOD) and catalase enzymes, MDA concentration, and gene expression of glutathione peroxidase (GPX), nuclear factor erythroid
2 (NRF2), and KEAP1 in high-fat diet (HFD) and normal diet (ND) feeding. * P < 0.05, significantly different between ND and HFD. Values are means ± standard deviation, n = 6
independent experiments.

(P = 0.001). However, there was no significant difference
between the AE-BOP group and the AE group (P = 1.000)
or the BOP group (P = 0.099). Moreover, no significant
difference was observed between AE and BOP groups (P =
0.502; Figure 2D).

Aerobic exercise significantly increased the NRF-2 gene
expression in the quadriceps (F = 7.56, P = 0.012, η = 0.274),
while the BOP (F = 2.09, P = 0.163, η = 0.095) and the AE-BOP
(F = 0.007, P = 0.935, η = 0.001) did not have a significant
effect on NRF-2 gene expression in the quadriceps. No
significant difference was found for the AE-BOP group with
AE (P = 1.000) or BOP groups (P = 354). Furthermore, no
significant difference was observed between AE and BOP
groups (P = 1.000; Figure 2E).

Aerobic exercise (F = 3.46, P = 0.077, η = 0.148), BOP
(F = 2.92, P = 0.103, η = 0.128), and AE-BOP did not have
any significant effect on the KEAP1 gene expression in the
quadriceps (F = 0.011, P = 0.917, η = 0.001; Figure 2F).

5. Discussion

It is well-known that eating high-fat food causes
obesity and has negative effects on energy metabolism
and protein synthesis in skeletal muscles. In this study,
HFD decreased the NRF2 gene expression and increased
the KEAP1 gene expression and oxidative stress. The results
revealed that the average activity of SOD, CAT enzyme,
and GPX gene expression in AE, BOP, and AE-BOP groups
increased after 4 weeks. These results are consistent with
those of previous studies confirming the positive effect of
AE on oxidative stress biomarkers (15, 17, 20, 39-43). Zhang
et al. concluded that exhaustive exercise with lemon peel
extract supplementation significantly increases SOD and
CAT levels (15).

Kheyrdeh et al. investigated the effect of 8 weeks of
high-intensity interval training (HIIT) and consumption
of citrus extracts on oxidative stress and antioxidant levels
of soleus muscle in aged rats. The results showed that

4 Gene Cell Tissue. 2024; 11(1):e138980.
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Figure 2. The effect of aerobic exercise (AE), bitter orange peel (BOP), and AE-BOP on antioxidant enzymes, MDA concentration, and gene expressions of glutathione peroxidase
(GPX), nuclear factor erythroid 2 (NRF2), and KEAP-1 in high-fat diet (HFD) feeding. a: Significant difference compared to control (CO)-HFD. b: Significant difference compared
to AE. c: Significant difference compared to BOP, P < 0.05. Values are mean ± standard deviation, n = 6 independent experiments.

HIIT increased GPX and decreased protein carbonyl. The
consumption of citrus extract and the interaction between
HIIT and citrus extract increased GPX and decreased MDA
and carbonyl protein in the soleus muscle tissue of old
rats. Finally, HIIT and citrus supplement consumption
separately and synergistically had a beneficial effect on
reducing oxidative stress and increasing antioxidant
activity (44).

In contrast, the research results indicated that
supplementation with different antioxidants during
endurance training reduces SOD gene expression in
rodents (33). Zhou et al. also showed that high-dose
astaxanthin supplementation, combined with
moderate-intensity swimming activity in rats, reduced

CAT and GPX levels in plasma or muscle compared to
the control group (35). Meier et al. concluded that
supplementing with different antioxidants in rodents
during endurance training reduces the GPX gene
expression (33). The difference in the results of the
studies may be justified based on the difference in the type
of activity and supplement, methodological differences
in measuring the activity of antioxidant enzymes, and
diversity in the types of muscle fibers studied.

The results of the present research demonstrated
that the average concentration of MDA in the AE, BOP,
and AE-BOP groups significantly decreased after 4 weeks
of training and taking the supplements. The reduction
of MDA in this study showed that aerobic physical

Gene Cell Tissue. 2024; 11(1):e138980. 5
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activity can be effective in decreasing skeletal muscle
lipid peroxidation in HFD conditions. These results are
consistent with those of previous studies (15, 18, 19, 35).

Davaran et al. concluded that AE and capsaicin
supplements decreased MDA concentration in HFD rats.
Therefore, AE and capsaicin can be used as suitable
alternative treatments for obesity and the related
inflammatory effects of oxidation (18). Zhang et al.
found that endurance exercise, along with lemon peel
extract supplementation, significantly lowers MDA levels
(15).

Comparing the average activity of the NRF2 gene in
the studied groups after 4 weeks of AE and taking the
BOP extract showed that the average activity of the NRF2
gene increased in the AE and AE-BOP groups, but the
average activity of the KEAP1 gene in these groups did
not significantly decrease. However, if the duration of
the AE period and consumption of the BOP extract were
longer, a significant difference may have been observed
compared to the control group. van Iersel et al. reported
that antioxidant supplements increase the expression of
antioxidant enzymes by raising the expression of the NRF2
gene and decreasing the expression of the KEAP1 gene (13).
Chen et al. concluded that curcumin supplementation,
by modulating the NRF2-KEAP1 signaling pathway,
significantly increased the endurance of rats in the
resistance swimming test and lowered exercise-induced
oxidative stress. Moreover, curcumin increased the
activity of SOD, CAT, and GPX enzymes by activating
NRF2 signaling (22). Rahimi et al. found that the herbal
supplement, along with endurance training, significantly
improved oxidative stress in diabetic rats by raising the
expression of the NRF2 gene and decreasing the expression
of the KEAP1 gene (21). In contrast, Zhou et al. showed that
high-dose astaxanthin supplementation, along with
moderate-intensity swimming activity, decreased the level
of NRF2 in the gastrocnemius muscle and decreased the
gene expression of NRF2-dependent enzymes in the hearts
of rats (35).

The results of our research revealed that consuming
BOP extract for 4 weeks has no significant effect on NRF2
and KEAP1 gene activity in the quadriceps of HFD male rats.
A reason for the nonsignificant difference between the
group receiving the BOP extract and the control group may
be the short period of supplement consumption (4 weeks).
In this regard, Gao et al. showed that after 20 weeks of Qing
brick tea consumption, the NRF2 signaling pathway and
downstream antioxidant factors increased in the skeletal
muscle of mice (45). Also, another study concluded that
Q10 supplementation increased the NRF2 gene expression
in heart, muscle, and liver tissues after 6 weeks of exercise
(46).

Finally, the results of the cited research may depend on
the level of physical fitness, type, intensity, and duration
of the exercise performed, and the type of supplement and
duration of its use.

5.1. Conclusions

In this study, consuming HFD developed oxidative
stress in the skeletal muscle tissue. By regulating the
NRF2-KEAP1 signaling pathway, AE and BOP extract
reduced the oxidative stress caused by HFD. Therefore, it is
recommended that these two interventions be used when
HFD is consumed.
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