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Abstract

Background: Stress is an aversive stimulus that disrupts the organism's biological balance. Formononetin, an isoflavone, has

been implicated in anxiolytic responses. However, the intra-hypothalamic molecular mechanisms by which formononetin

controls stress remain unknown.

Objectives: This study aimed to investigate the impact of formononetin on hypothalamic Mch and Crh gene expression in a rat

model of stress.

Methods: Male Wistar rats (200 - 220 g) were used. Thirty minutes before exposure to stress, the rats were injected with either

saline or formononetin. Two hours after stress induction, hypothalamic samples were dissected and stored at -70°C until the

measurement of Mch and Crh gene expression using real-time PCR.

Results: Stress induction led to a significant increase in Mch and Crh mRNA levels. However, animals receiving formononetin

showed a significant reduction in Mch and Crh mRNA levels compared to the stressed rats.

Conclusions: Formononetin may exert anxiolytic effects by down-regulating intra-hypothalamic CRH and MCH signaling

pathways.
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1. Background

Stress is defined as an unpleasant stimulus that

disrupts an organism's biological equilibrium.

Environmental and emotional factors are among the

types of stressors that can trigger this response (1).

Adaptive reactions requiring modifications to neural

and neuroendocrine signaling pathways are essential

for managing stress and maintaining homeostasis. Both

physical and psychological stressors activate the

hypothalamic-pituitary-adrenal (HPA) axis through

various brain circuits. The corticotrophin-releasing

hormone (CRH), primarily synthesized in the

paraventricular nucleus (PVN) of the hypothalamus,

regulates the HPA axis and acts as the final common

pathway integrating neuroendocrine stress responses

(2). Acute stress typically elevates CRH mRNA levels and

its release in both hypothalamic and extra-

hypothalamic regions. The CRH plays a central role in

orchestrating stress responses, including inhibiting

reproductive function and behavior in both sexes in

response to various stressors, partly through CRH and

related peptides (3).

Melanin-concentrating hormone (MCH) is

predominantly expressed in the hypothalamus and

exerts its effects through two receptors, MCHR1 and

MCHR2 (4). Due to the widespread distribution of MCH

and MCHR1 in the brain, the MCHergic system is

believed to influence neuronal activity and play a role in

various functions, including mood regulation and

anxiogenic responses (5). Research by Kim et al.

demonstrated that stress induces an increase in MCH

synthesis in the lateral hypothalamus, hippocampus,
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and other emotion-related brain regions (6). Given the

high expression of MCHR1 in brain areas associated with

emotional control, MCH signaling is thought to

modulate depression and anxiety behaviors (7).

Although many medications are available for

treating anxiety, challenges such as slow onset, poor

absorption, and adverse effects persist. Flavonoids are a

key component in many pharmacological and medical

treatments. Isoflavones, including formononetin, are a

subclass of flavonoids found in soybeans, chickpeas, and

red clover. This group of compounds has been

extensively studied for its role in managing central

nervous system (CNS) disorders, such as anxiety and

depression. Isoflavones have been shown to have anti-

stress and anti-depressant effects by modulating several

mediators (8). Formononetin, a natural isoflavone,

exhibits significant anti-inflammatory and

neuroprotective properties (9). Studies have also

demonstrated its anxiolytic effects in the basolateral

amygdala (10). Additionally, formononetin has been

identified as a neuroprotective agent against

Alzheimer’s disease, ischemia, and other neurological

disorders (11).

2. Objectives

Previous studies have shown that formononetin

improves depression by upregulating the

glucocorticoid receptor, brain-derived neurotrophic

factor, and promoting hippocampal neurogenesis (12).

To further explore the molecular mechanisms

underlying the anti-stress effects of formononetin, this

study investigated its impact on hypothalamic Mch and

Crh gene expression in a rat model of stress.

3. Methods

3.1. Animals

Male Wistar rats were housed under standard

laboratory conditions with a 12-hour light/12-hour dark

cycle in a temperature-controlled room (21 ± 2°C), with

food and water provided ad libitum.

3.2. Experimental Design

The animals were randomly divided into four groups

(n = 5). Group 1 received a saline injection as the control

group, while groups 2, 3, and 4 were stressed groups that

received saline, 20 µg, or 40 µg of formononetin,

respectively. The drugs were injected 30 minutes prior

to stress induction via the third cerebral ventricle.

3.3. Surgery and Cannulation

Rats were anesthetized using ketamine/xylazine and

positioned in a stereotaxic apparatus. A cannula was

implanted for third cerebral ventricle injections at

coordinates AP = 0.84 mm, ML = 0, and DV = 6.5 mm,

according to the stereotaxic atlas (13, 14). The animals

were given one week to recover before being used in the

experiment. The injections were administered using a

polyethylene tube connected to a Hamilton syringe.

After the experiment, the hypothalamus was isolated

and stored at -70°C for mRNA analysis.

3.4. Acute Restraint Stress

To induce restraint stress, the rats were placed in a

transparent plexiglass tube (5 cm wide and 18 cm long)

for 2 hours. Formononetin was administered, and stress

was induced 30 minutes after the injection (15).

3.5. Real-time Polymerase Chain Reaction (RT-PCR)

The RT-PCR technique was used to evaluate Mch and

Crh gene expression. Total RNA was extracted using the

Trizol kit (Qiagen, Germany). For cDNA synthesis, 1 μg of

total RNA was used according to the kit instructions. To

measure gene expression levels, 1 μg of cDNA was used

for the RT-PCR reaction (Biotech Rabbit, Germany),

following the instructions of the SYBR Green I Kit

(Takara Bio Inc., Japan). The sequences of the primers are

listed in Table 1. The gene expression changes were

calculated using the 2-ΔΔCT equation.

3.6. Statistical Analysis

Data were analyzed using SPSS software, one-way

ANOVA, and Tukey's post hoc test. The results are

presented as mean ± SEM, and differences were

considered statistically significant at P ≤ 0.05.

4. Results

The Mch mRNA level was significantly increased in

the stressed rats (group 2) compared to the control

group (group 1) (Figure 1A, P ≤ 0.05). However, in rats

receiving 20 µg (group 3) or 40 µg (group 4) of

formononetin, the Mch mRNA level significantly

decreased compared to the stressed rats (Figure 1A, P ≤

0.05).
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Table 1. Specific Oligo Nucleotide Sequences of Primers

Variables Primers Sequences Amplified Product

Crh 103 bp

Forward 5′- TGGATCTCACCTTCCACCTTCTG -3′

Reverse 5′- CCGATAATCTCCATCAGTTTCCTG -3′

Mch 195 bp

Forward 5′- TCAGAAGGAAGATACCGCAGA -3′

Reverse 5′- ACTGCTGGTCCTTTCAGAGC -3′

GAPDH 120 bp

Forward 5′- AAGTTCAACGGCACAGTCAAG -3′

Reverse 5′- CATACTCAGCACCAGCATCAC -3′.

Figure 1. The effects of formononetin on the A, Mch; B, Crh genes expression in a stress model of rat. *: Compared with control; &: Compared to the stress group.

Similarly, the Crh mRNA level was significantly

elevated in the stressed rats (group 2) compared to the

control group (group 1) (P ≤ 0.05). Administration of 20

µg (group 3) or 40 µg (group 4) of formononetin

significantly reduced Crh mRNA levels in comparison to

the stressed rats (Figure 1B, P ≤ 0.05).

5. Discussion

This study demonstrated that stress increases the

expression of the Crh gene, aligning with previous

research that shows the activation of the hypothalamic-

pituitary-adrenal (HPA) axis in response to stressful

situations (2-16). Another study indicated that chronic

stress leads to sustained elevation in the activity of CRH

neurons in the paraventricular nucleus (PVN) of the

hypothalamus (17). These CRH neurons, which control

the HPA axis, play a key role in mediating physiological

responses to stress. By integrating various stress-related

inputs, CRH neurons coordinate the behavioral,

endocrine, and immunological responses to stress (18).

However, their function is modulated by other

neurotransmitters, such as glutamate, dopamine,

norepinephrine, GABA, and other neuropeptides (19).

Research on the therapeutic potential of plant-based

products for anxiety and depression has accelerated

recently. This study aimed to assess the anxiolytic

properties of formononetin in rats and explore possible

mechanisms of its action. Flavonoids have been shown
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to benefit the management of neurological diseases like

depression and anxiety (10, 11). In rats treated with

formononetin, CRH gene expression decreased,

supporting previous findings that formononetin helps

reduce anxiety in an inflammatory pain model (10).

It has been suggested that noradrenergic and

dopaminergic neurons are critical in activating the HPA

axis (20, 21). Formononetin exerts an inhibitory effect on

norepinephrine and dopamine release (22), suggesting

that it may downregulate Crh gene expression by

reducing the activity of noradrenergic and

dopaminergic neural circuits.

The axons of glutamatergic neurons project onto

CRH neurons (23), and glutamate receptors, including

NMDARs and AMPARs, are densely expressed on these

neurons (24). A study by Zhou and Fang demonstrated

that stress induces hyperactivation of the HPA axis by

increasing the activity of NMDAR in PVN-CRH neurons

(2). Previous studies have also shown that stress elevates

the frequency of glutamatergic EPSCs in CRH neurons

(25). Thus, blocking glutamatergic NMDAR can

downregulate the HPA axis and reduce plasma

corticosterone levels in stressed rats (2-18). Tian et al.

(2013) found that formononetin protects cortical

neurons from NMDA-induced apoptosis (26), and they

further established that isoflavones like formononetin

can directly bind to estrogen receptors to regulate gene

expression via the estrogen response element (11). Wei et

al. suggested that estrogen protects against the adverse

effects of repeated stress on glutamatergic transmission

(27). Therefore, formononetin may reduce HPA axis

activity, partly by downregulating glutamatergic neural

circuits.

Since the HPA axis and CRH neurons are activated by

MCH (28), this study measured Mch mRNA levels in the

hypothalamus after an acute stress challenge and

formononetin injections. Mch mRNA levels were

upregulated in the stressed rats, consistent with studies

showing that hyperactivity of hypothalamic MCH

neurons influences stressful behaviors (29, 30).

Additionally, previous research indicates that chronic

stress activates MCH neural pathways in mice (31).

Formononetin caused a decrease in hypothalamic Mch

gene expression. Wang et al. (10) demonstrated the

anxiolytic effects of formononetin. The MCH system

plays a role in emotional dysfunction, and MCH receptor

antagonists have shown anti-stress and anti-depressive

effects. Previous research indicates that hypothalamic

MCH neurons receive inputs from glutamatergic neural

circuits (32). Sankhe et al. found that deleting Vglut2

from MCH neurons results in anxiolytic responses (32).

Furthermore, the anxiogenic effects of glutamate are

similar to those of MCH, suggesting that glutamate and

MCH may work synergistically to regulate anxiety-like

behaviors (32). The anti-glutamatergic action of

formononetin may contribute to the downregulation of

hypothalamic MCH in stressed rats.

The present study suggests that formononetin may

improve stress by downregulating hypothalamic Crh

and Mch expression. However, further research is needed

to fully understand formononetin’s role in stress

management, particularly by investigating its effects on

other stress-related genes or proteins such as orexin,

neuropeptide Y, neuropeptide S, phoenixin, and

calcitonin gene-related peptide in both acute and

chronic stress models.

5.1. Conclusions

The results showed that the induction of stress

significantly increased the mRNA levels of Crh and Mch.

Formononetin exerted inhibitory effects on

hypothalamic Crh and Mch gene expression in the

stressed rats. This suggests that formononetin may have

promising therapeutic potential for anxiety by

regulating hypothalamic neural circuits upstream of

CRH neurons, such as MCH neurons.
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