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Abstract

Background: Chemotherapy involves the use of chemical agents to kill cancer cells, but it can also harm healthy, rapidly

growing cells in the body. 5-fluorouracil (5-FU) induces tissue damage through oxidative stress and impaired male reproductive

activity. The use of antioxidants appears to mitigate the harmful effects caused by 5-FU.

Objectives: This study evaluated the potential protective effects of taurine (TAU) against 5-FU-induced testicular toxicity in

male rats.

Methods: Thirty-five healthy adult male Wistar rats (200 - 250 g, 6 - 8 weeks old) were randomly divided into five groups:

Control, 20 mg/kg 5-FU, and 50, 100, and 200 mg/kg of TAU co-administered with 20 mg/kg 5-FU. Treatments were administered

intraperitoneally for 14 consecutive days. Serum endocrinological analyses, as well as testicular biochemical and

histomorphometric studies, were performed on the different groups.

Results: Testis and epididymis weights significantly decreased (P < 0.001) in male rats treated with 5-FU. Serum levels of

luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T4) were significantly lower (P < 0.05) in 5-FU-

treated rats. Testicular tissue of 5-FU-treated rats exhibited significantly reduced activity of superoxide dismutase (SOD) and

glutathione peroxidase (GPx) (P < 0.001) and increased levels of malondialdehyde (MDA) (P < 0.001). Co-administration of TAU

significantly improved germinal epithelium height (GEH) and seminiferous tubule diameter (STD) (P < 0.001) in 5-FU-treated

rats. Additionally, TAU co-administration significantly improved oxidative status and reproductive parameters in 5-FU-treated

rats.

Conclusions: These findings suggest that TAU has the potential to prevent 5-FU-induced testicular oxidative toxicity and

restore suppressed reproductive parameters in male rats.
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1. Background

Chemotherapy is a common strategy for cancer

treatment, defined as the use of chemical agents to halt

the growth and destroy cancer cells. However, it not only

targets cancer cells but also affects other rapidly

dividing cells in the body, such as hair and blood cells,

leading to systemic toxicities (1, 2). 5-Fluorouracil (5-FU)

is a widely used chemotherapy drug administered for

the treatment of various cancer types. It exerts its anti-

cancer effects by inhibiting nucleotide thymidylate

synthase and incorporating toxic metabolites into DNA

and RNA (3, 4).

Treatment of testicular cancer with 5-FU has been

associated with a decrease in the weight of male

reproductive organs, structural changes in the

seminiferous tubule epithelium, and reduced serum

testosterone levels (5, 6). Oxidative stress caused by

chemotherapy drugs can lead to both temporary and

permanent harmful effects on male fertility.

Consequently, strategies to mitigate the side effects of

chemotherapy drugs have gained significant attention

(7).

https://doi.org/10.5812/gct-155560
https://doi.org/10.5812/gct-155560
https://doi.org/10.5812/gct-155560
https://crossmark.crossref.org/dialog/?doi=10.5812/gct-155560&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/gct-155560&domain=pdf
https://orcid.org/0000-0003-1182-9685
https://orcid.org/0000-0003-1182-9685
mailto:dorostghoal@gmail.com


Dorostghoal M et al. Brieflands

2 Gene Cell Tissue. 2025; 12(1): e155560

In recent years, antioxidants have emerged as

potential therapeutic interventions due to their ability

to combat oxidative stress and prevent its role in cancer

development (8, 9). The primary function of

antioxidants is to scavenge or neutralize free radicals

and inhibit the deleterious downstream effects of

reactive oxygen species (ROS).

Taurine (TAU) is one of the most abundant free amino

acids, biosynthesized by various mammalian tissues,

including the central nervous system, liver, retina,

mammary glands, brain, and kidney (10-14). It is found

in foods such as meat, seafood, and milk. Taurine plays a

crucial role in various cellular processes, including

calcium ion regulation, membrane stabilization,

immune response, retinal growth, ion transport, and

reproduction. It also exhibits antioxidant, anti-

inflammatory, hepatoprotective, antidiabetic,

antimicrobial, and antitumor properties (15, 16).

2. Objectives

The present study aimed to investigate the potential

protective effects of TAU against testicular toxicity

induced by 5-FU administration in adult male rats.

3. Methods

3.1. Pharmacological Materials

5-Fluorouracil was manufactured by Ebewe Pharma

Ges.m.b.H. Nfg. KG, 4866 Unterach, Austria. Taurine was

purchased from Sigma Chemical Co., St. Louis, MO, USA.

3.2. Experimental Design

All experiments were conducted under protocols

approved by the Animal Ethics Committee of Shahid

Chamran University of Ahvaz, Ahvaz, Iran

(EE/1400.2.24.25684/scu.ac.ir). Animal care and use were

carried out in accordance with the guidelines of the

National Research Council. Thirty-five adult male Wistar

rats (6 - 8 weeks old, weighing 200 - 250 g) were obtained

from the animal house of Ahvaz Jondishapur University

of Medical Sciences (JUMS), Ahvaz, Iran. The rats (three

per cage) were housed under controlled conditions: A

temperature range of 25 ± 2°C, relative humidity of 55 ±

5%, and a 12-hour light/dark cycle. Food and tap water

were provided ad libitum. The animals were

acclimatized for two weeks before the experiment. The

rats were randomly divided into five groups (n = 7 per

group): A control group that received normal saline and

four treatment groups injected intraperitoneally (IP)

with the following: 20 mg/kg 5-FU, 20 mg/kg 5-FU + 50

mg/kg TAU, 20 mg/kg 5-FU + 100 mg/kg TAU, and 20

mg/kg 5-FU + 200 mg/kg TAU. The treatments were

administered daily for two weeks, with TAU given 1 hour

before 5-FU administration. At the end of the

experiment, the rats were weighed, and blood samples

were collected after euthanasia under anesthesia. The

testis, ventral prostate, seminal vesicles, and epididymis

were removed and weighed. The right testis was fixed in

formalin saline for histological analysis, while the left

testis was sectioned and stored at -80°C for biochemical

assays.

3.3. Endocrinological Analysis

Animals were fasted overnight, and blood samples

were collected via cardiac puncture after euthanasia

under anesthesia. The blood samples were centrifuged

at 4000 g for 5 minutes, and the sera were stored at

-30°C. Levels of luteinizing hormone (LH), follicle-

stimulating hormone (FSH), and testosterone (T4) were

analyzed using radioimmunoassay kits (Monobind Inc.,

Lake Forest, USA).

3.4. Biochemical Analysis

The left testis was homogenized in ice-cold 0.1 M

sodium phosphate buffer (10% w/v) and then

centrifuged twice at 10,000 rpm for 15 - 20 minutes at

4°C. The resulting supernatant was used to analyze

antioxidant enzyme activity and lipid peroxidation

levels. Colorimetric assay kits (Randox Labs Ltd.,

Ardmore, United Kingdom) were used to measure

glutathione peroxidase (GPx) levels and superoxide

dismutase (SOD) activity. Malondialdehyde (MDA) levels,

as an index of lipid peroxidation, were assayed using the

thiobarbituric acid test, measured at 532 nm, and

expressed as nmol/mg.

3.5. Histological and Histometrical Analysis

All rats were sacrificed, and their testes were

removed and fixed in formalin saline. For histological

and histometric analysis, tissue samples were

embedded in paraffin, sectioned at 5 - 6 µm, and stained

with hematoxylin and eosin. Germinal epithelium

height (GEH) and seminiferous tubule diameter (STD)
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were measured using a microscopic ocular graticule in

90 round or nearly round cross-sections of tubules from

each rat.

3.6. Statistical Analysis

SPSS version 16 software (SPSS Inc., Chicago, IL, USA)

was used to analyze statistical differences between

groups. Analysis of variance (ANOVA), followed by

Tukey’s test, was performed. Data are expressed as the

mean ± SEM, and a P-value of < 0.05 was considered

statistically significant.

4. Results

4.1. Body and Reproductive Organs Weights

The mean body weight of 5-FU-treated rats decreased

significantly (P < 0.001) compared to the control group.

In the groups receiving 50, 100, and 200 mg/kg of TAU

along with 5-FU, body weight increased significantly (P <

0.001) compared to 5-FU-treated rats. However, the mean

body weight of the groups receiving 50 and 100 mg/kg

of TAU along with 5-FU remained significantly lower (P <

0.001) compared to the control rats. In the group

receiving 200 mg/kg of TAU along with 5-FU, the mean

body weight showed no significant difference (P = 0.115)

compared to the control rats (Table 1).

The mean testis and epididymis weights in 5-FU-

treated rats decreased significantly (P < 0.001)

compared to the control group. A significant dose-

dependent increase (P < 0.001) in mean testis and

epididymis weights was observed in rats that

simultaneously received 5-FU and different doses of TAU,

compared to the 5-FU-treated group. No statistically

significant differences (P > 0.05) were observed between

5-FU-treated rats and the control group in the weights of

seminal vesicles and ventral prostates (Table 1).

4.2. Endocrinological Analysis

Significant decreases (P < 0.05) were observed in the

mean serum concentrations of T4, LH, and FSH in rats

treated with 5-FU compared to the control group. In 5-

FU-treated rats co-administered with different doses of

TAU, significant dose-dependent increases (P < 0.05)

were observed in the mean serum levels of T4, LH, and

FSH compared to the group receiving 5-FU alone (Figure

1). The levels of T4, LH, and FSH in the groups receiving

100 and 200 mg/kg of TAU along with 5-FU showed no

significant differences compared to the control rats

(Figure 1).

4.3. Biochemical Analysis

In rats treated with 5-FU, significant increases (P <

0.001) in testicular MDA levels and decreases in

testicular SOD and GPx activities were observed

compared to the control group. In 5-FU-treated rats co-

administered with different doses of TAU, significant

dose-dependent decreases (P < 0.001) in testicular MDA

levels were observed compared to the group receiving 5-

FU alone (Table 2). Testicular MDA levels in the groups

receiving 100 and 200 mg/kg of TAU along with 5-FU

showed no significant differences compared to the

control rats (Table 2). Dose-dependent increases in

testicular SOD and GPx activities were observed in 5-FU-

treated rats co-administered with different doses of TAU

compared to the group receiving 5-FU alone (Table 2).

4.4. Histological and Histometrical Analysis

Degenerative alterations in the STD with loss of

spermatogenesis, a decrease in GEH, and an increase in

tubular lumen were observed in 5-FU-treated rats.

Numerous vacuoles were present in the germinal

epithelium, and the lumens of some seminiferous

tubules lacked spermatozoa due to spermatogenesis

arrest in rats receiving 5-FU (Figure 2A - F). Seminiferous

tubule diameter and GEH decreased significantly (P <

0.001) in rats exposed to 5-FU compared to the control

group. In rats treated with 5-FU and co-administered

with different doses of TAU, significant increases (P <

0.001) in STD and GEH were observed compared to 5-FU-

treated rats (Figure 3). In the groups receiving 100 and

200 mg/kg of TAU along with 5-FU, the mean STD and

GEH showed no significant differences (P = 0.115)

compared to the control rats (Figure 3).

5. Discussion

The use of chemotherapeutic drugs is one of the

most common treatments for destroying cancerous

cells. However, in addition to their beneficial effects,

these drugs also have side effects on healthy body cells.

Reducing the harmful effects of chemotherapy drugs

while increasing their effectiveness remains a key

concern for cancer researchers. In the present study, the

effects of TAU were evaluated on testicular toxicity
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Table 1. Mean ± SEM of Body and Reproductive Organs Weights Following the Co-administration of 5-Fluorouracil and Different Doses of Taurine in Adult Male Wistar Rats a, b

Parameters Control 5-FU 5-FU + 50 TAU 5-FU + 100 TAU 5-FU + 200 TAU

Body (g) 302.4 ± 1.6 228.7 ± 1.9 c 251.4 ± 2.3 c, d 274.5 ± 2.3 c, d 293.2 ± 3.5 d

Testis (mg) 1328.9 ± 5.3 1001.7 ± 6.4 c 1248.9 ± 6.2 c, d 1302.4 ± 5.5 c, d 1326.3 ± 5.8 d

Epididymis (mg) 536.8 ± 6.1 449.1 ± 2.3 c 459.1 ± 4.1 c, d 522.8 ± 2.5 d 526.4 ± 2.0 d

Seminal vesicle (mg) 466.2 ± 8.0 450.4 ± 4.9 459.2 ± 1.8 462.8 ± 6.5 461.4 ± 5.0

Ventral prostate (mg) 203.2 ± 3.6 196.0 ± 1.6 199.1 ± 2.7 198.4 ± 2.7 199.8 ± 2.7

Abbreviations: 5-FU, 5-fluorouracil; TAU, taurine.

a Data are expressed as mean ± SEM.

b ANOVA followed by Tukey’s test.

c Shows significant difference (P < 0.05) between the 5-FU treated rats and the control group.

d Shows significant difference (P < 0.05) between 5-FU treated rats and the group receiving 5-fluorouracil along with taurine.

Figure 1. Mean ± SD of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH) and T4 following the co-administration of 5-fluorouracil (5-FU) and different doses
of taurine (TAU) in adult male Wistar rats. a, shows significant difference (P < 0.05) between the 5-FU treated rats and the control group; b, shows significant difference (P < 0.05)
between 5-FU treated rats and the group receiving 5-FU along with TAU.

induced by 5-FU in male rats. Our findings indicate that

TAU has protective effects on testicular structure and

significantly mitigates the testicular oxidative toxicity

caused by 5-FU administration.

Several studies have demonstrated that TAU can

prevent the potential side effects of chemotherapy

drugs on normal cells due to its antioxidant, anti-

apoptotic, and anti-inflammatory properties (17, 18). The

present study showed that TAU administration increases

the activity of GPx and SOD enzymes and decreases lipid

peroxidation levels in the testes of 5-FU-treated rats. In

this regard, Lee et al. reported that TAU improves GSH

levels and enhances the activity of several liver

antioxidant enzymes, including GPx, GST, and CAT, in

rats subjected to foot-shock-induced stress (19). Aly and

Khafagy found that endosulfan increases sperm DNA

fragmentation, while TAU administration protects

sperm chromatin integrity due to its antioxidant

properties (20). Alam et al. demonstrated that TAU

supplementation reduces brain, bone, and liver

toxicities caused by MTX and TAM (21).

https://brieflands.com/articles/gct-155560


Dorostghoal M et al. Brieflands

Gene Cell Tissue. 2025; 12(1): e155560 5

Table 2. Mean ± SEM of Lipid Peroxidation and Antioxidant Enzymes Levels Following the Co-administration of 5-Fluorouracil and Different Doses of Taurine in Adult Male Wistar

Rats a, b

Parameters Control 5-FU 5-FU + 50 TCU 5-FU + 100 TCU 5-FU + 200 TCU

MDC (nmol/mg protein) 3.15 ± 0.7 10.66 ± 1.3 c 7.33 ± 0.91 c, d 5.08 ± 0.99 d 3.30 ± 0.71 d

GPx (U/mg protein) 7.69 ± 0.37 1.84 ± 0.25 c 4.40 ± 0.56 c,d 6.14 ± 0.55 d 5.92 ± 0.53 d

SOD (U/mg protein) 29.01 ± 1.78 14.69 ± 1.27 c 22.76 ± 1.89 c, d 27.32 ± 0.89 d 28.26 ± 1.33 d

Abbreviations: MDA, malondialdehyde; GPx, glutathione peroxidase; SOD, superoxide dismutase; 5-FU, 5-fluorouracil; TAU, taurine.

a Data are expressed as mean ± SEM.

b ANOVA followed by Tukey’s test.

c Shows significant difference (P < 0.05) between the 5-FU treated rats and the control group.

d Shows significant difference (P < 0.05) between 5-FU treated rats and the group receiving 5-FU along with TAU. ANOVA followed by Tukey’s test.

Figure 2. Histological sections of testis (Hematoxylin-Eosin staining) in control group, A, ×40, 5-fluorouracil (5-FU); B, ×20; and C, ×40, 5-FU along with 50 mg/kg taurine (TAU); D,
×20, 5-FU along with 100 mg/kg TAU; E, ×40 5-FU along with 200 mg/kg TAU; F, ×40 treated male Wistar rats.

Additionally, Yousef and Aboelwafa reported that

TAU, through its antioxidant properties, provides

protective effects against nephrotoxicity induced by 5-

FU in male rats (22). A study by Noruzi and Zareh

concluded that TAU acts as an antioxidant and prevents

the consequences of oxidative stress caused by cisplatin

(23). Furthermore, Yoshimura et al. showed that UVB

radiation decreases moisture and TAU content in the

epidermis of mice, but TAU supplementation was able to

maintain skin moisture and restore the epidermis (24).

Furthermore, the anti-tumor properties of TAU have

been reported in several studies. Tu et al. demonstrated

that TAU inhibits the proliferation of A549 human lung

cancer cells and the growth of transplanted tumors in

mice, enhancing A549 cell apoptosis by increasing BAX

protein and Puma levels while decreasing BCL-2 protein

levels (25). Zhang et al. reported that TAU induces

cellular apoptosis and inhibits cell proliferation in

human colon cancer cells (26). Additionally, the

protective effects of TAU against the proliferation of

prostate cancer cells were reported by Song et al., while

Li et al. found that TAU induces apoptosis in cervical

cancer cells (27, 28).

5.1. Conclusions

The findings of the present study suggest that TAU

ameliorates 5-FU-induced testicular damage in Wistar

rats, likely due to its antioxidant properties

counteracting oxidative toxicity. Further molecular
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Figure 3. Mean ± SD of seminiferous tubules diameters (STD) and germinal epithelium height (GEH) following the co-administration of 5-fluorouracil (5-FU) and different doses
of taurine (TAU) in adult male Wistar rats. a, shows significant difference (P < 0.05) between the 5-FU treated rats and the sham group; b, shows significant difference (P < 0.05)
between 5-FU treated rats and the group receiving 5-FU along with TAU.

studies are needed to elucidate the underlying

mechanisms of TAU's protective effects.
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