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Abstract

Background: Treatments of advanced cervical cancer are limited to pelvic radiation and chemotherapy while outcomes are disap-
pointing. Poly (ADP-ribose) polymerase inhibitors are highly toxic to cells with defects in DNA repair pathways. The purpose of the
current study was to evaluate whether the combination of AZD2461 as a novel poly (ADP-ribose) polymerase 1 inhibitor and a histone
deacetylase inhibitor, valproic acid, could be efficacious in Hela cells harboring no mutations in DNA repair pathways.
Methods: Cell morphology assay and MTT viability test were performed to determine cytotoxic effects of AZD2461 and valproic acid,
separately and in combination. The combination effects were measured using the Chou-Talalay’s method.
Results: Although the analysis of cell morphology revealed that the combination of the two inhibitors could decrease the viable
cells compared to each drug separately, MTT results showed that there was a mild antagonistic effect in the affected fractions of
AZD2461/valproic acid-treated Hela cells at all effective doses (CI > 1.1).
Conclusions: Our findings from this preliminary study conducted in Spring 2018 suggest that combining valproic acid with
AZD2461 exerts mild antagonistic effects on Hela cells harboring no substantial defects in DNA repair pathways.
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1. Background

Advanced cervical cancer (ACC) is regarded as the sec-
ond most prevalent malignancy in women besides being
the most common female-related cancer in dozens of de-
veloping countries (1). ACC patients are often treated with
chemotherapy and radiotherapy followed by brachyther-
apy. Although chemotherapy and radiotherapy are in-
variably the main treatments for this type of tumor, the
prognosis remains extremely poor (2). Radiotherapy is re-
ported to be the cause of increased morbidity in ACC cases.
Thus, this treatment is given only when the para-aortic
nodal disease is confirmed (3). Hence, a precise evaluation
of the extent of the tumor is substantial in order to de-
sign the most beneficial treatment. The majority of ACC
cases contain human papillomavirus (HPV) infection, but

viral infection was not detectable in a small percentage
of the examined patients (4), reflecting the involvement
of genetic variations as major risk factors for this disease
(5) beside considering the sensitivity of ACC cells to geno-
toxic agents (6). Among ACC cell lines, Hela is the most
widely used model cell line and no genomic reference for
this cell line has been released so far. The analysis of the
genomic content of Hela cells has uncovered a remarkably
high level of aneuploidy. Moreover, gene expression pat-
terns related to various cellular pathways (i.e., DNA repair
pathways) has been reported to be altered in these cells
(7). The cell death happens following the occurrence of
DNA damage (8). Many DNA lesions are found to trigger
the cell death including DNA double-strand breaks (DSBs)
(9). The repair of DNA lesions is essential in preventing
the cell death. Drugs that suppress DNA repair responses
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in cells harboring mutations in DNA repair pathway genes
could be efficacious in monotherapy or in combination
with other chemotherapeutic agents with the possible ad-
vantage of fewer side effects (10). DSBs are normally re-
paired by the homologous recombination (HR) pathway
that involves RAD51 that requires breast cancer susceptibil-
ity proteins (BRCA1) and BRCA2 and poly (ADP-ribose) poly-
merase 1 (PARP1) (11). Studies revealed that the deficiencies
of other HR-related proteins including CHK2, RAD super-
family, RPA1, ATR, ATM, and CHK1 sensitize the cells to PARP
inhibition.

PARP1 has a critical role in more than one DNA repair
processes, and small molecule selective inhibitors of PARP
(PARPi) have been developed as chemotherapy sensitizers
in cancer progression research (12). Olaparib (AZD2281,
Lynparza) was the first PARPi approved by the food and
drug administration (FDA) for the treatment of patients
with deleterious germline BRCA-mutated advanced ovar-
ian cancer (13). The growth-inhibitory efficacy of this PARPi
was further investigated in other types of cancer cells as
monotherapy or in combination with classic platinum an-
ticancer drugs, which resulted in promising but limited
outcomes due to the issues of drug resistance (14). In
contrast, significantly lower levels of drug resistance were
observed in treating HR-deficient breast cancer cells with
AZD2461. In addition, anti-proliferative and apoptosis-
inducing effects of AZD2461, as a newly developed struc-
tural analog for olaparib, have been recently discovered
(15, 16). On the other hand, histone deacetylase inhibitors
(HDACi) have been well established to exert anti-tumor ef-
fects on different cancerous human cells in vitro and in
vivo (17). Valproic acid (VPA) is a conventional anti-seizure
drug that recently has been demonstrated to have anti-
cancer activities mediated by the selective inhibition of cel-
lular histone deacetylase 1 (HDAC1) (18). VPA was reported
to be able to suppress the cell proliferation as a single agent
or in combination with other cell growth inhibitors, specif-
ically in Hela cells (19, 20).

Combining conventional chemotherapeutic drugs
with selective inhibitors of DNA repair pathway has re-
cently gained much attention in the field of selective
cancer treatment (21). While mutations in HR-related
genes are associated with much higher risk of breast
and ovarian cancers (22), these genetic variations are not
frequent in other cancer types including ACC. The present
experiment aimed to evaluate cell viability reducing and
DNA repair potential of combined AZD2461 and VPA in
Hela cells.

2. Methods

2.1. Chemicals and Assay Kits

3-(4,5- dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium
bromide (MTT), penicillin, streptomycin, amphotericin B,
AZD2461, and VPA were obtained from Sigma-Aldrich (St.
Louis, MO, USA). Both drugs were dissolved in HPLC grade
DMSO and stored at -20°C as stock solutions for further
use. Fetal bovine serum (FBS) was procured from Gibco
(Rockville, MD, USA). HPLC grade DMSO, Trypan blue, RPMI-
1640 medium, and trypsin-EDTA solution were purchased
from INOCLON (G. Innovative Biotech Co. (INOCLON),
Iran). Cell culture flasks were obtained from Biofill (Jet
Biofill, China). All chemicals used were of analytical grade.

2.2. Cell lines and Culture Method

This study was conducted in spring 2018. Hela hu-
man advanced cervical cancer cell line was purchased from
the Cell Repository of the Research Institute of Biotechnol-
ogy, Ferdowsi University of Mashhad, Iran. The cells were
cultured in RPMI-1640 culture media supplemented with
penicillin (105 mg/mL), streptomycin (100 U/mL), Ampho-
tericin B (2.5 mg/L), and 10% FBS. The cells were grown to
confluence under stable culture conditions (a humidified
atmosphere with 5% CO2 at 37°C incubator). The controls
also were exposed to 1% DMSO and FBS containing fresh
RPMI medium. All experiments were done at least in tripli-
cate.

2.3. Evaluating Anti-Proliferative Effects of Each Inhibitor Using
MTT Assay

In order to determine the half-maximal inhibitory con-
centration (IC50) of AZD2461 and VPA on Hela cells using
the MTT assay protocol, 6000 cells/well were seeded and
after one day of attachment period, the cells were treated
with both inhibitors at increasing concentrations ranging
from 0.612 mM to 20 mM and 6.25 µM to 200 µM for VPA
and AZD2461, respectively. Following 24 and 48 hours of
treatment, 5 mg/mL tetrazolium dye was added and the
cells were incubated for two and a half hours. Then, the
culture medium was removed, 180 µL of DMSO was added,
and by using a microplate reader (Stat Fax 2100; Aware-
ness Technology, Los Angeles, CA, USA), the absorbance at
492/630 nm wavelength was measured. The viability was
expressed by dividing the absorbance of each concentra-
tion of treated cells by absorbance of control cells.

2.4. Analysis of Drug Combination

Hela cells were incubated with both inhibitors as sin-
gle agents (VPA: 0.46 mM - 30 mM; AZD2461: 7.5 µM -
480 µM) with a combined ratio of 1:60, each diluted 1:2,
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within the given ranges. Using CompuSyn software (Ver-
sion 1.0, Combo-Syn Inc., US), the interaction between con-
stant ratios of both inhibitors was measured based on
Chou-Talalay principles where regardless of the units of
the drugs, CI = 0.9 - 1.1, CI < 0.9, and CI > 1.1 indicated an ad-
ditive effect, a synergism, and an antagonism, respectively
(23). The dose-effect relationships of combined inhibitors
were modeled by using the median-effect equation:

(1)
fa
fu

=

(
D

Dm

)m

Where D indicates the dose of the inhibitor, m is the
median effect coefficient, fa is the fraction affected, fu rep-
resents the fraction unaffected (fu = 1 - fa), and Dm is the
median-effect dose (IC50 values) (24).

2.5. Morphological Examination of Hela Cells

Following 48 hours of incubation, Hela cells morphol-
ogy and proliferation were monitored using an inverted
phase-contrast microscope (Olympus CKX41, Tokyo, Japan)
when treated with IC50 values of AZD2461 and VPA. Im-
ages were directly captured by a digital camera (Olympus
C-7070).

2.6. Statistics

Results were analyzed using SPSS 22 software for Win-
dows (release 22, SPSS Inc., Chicago, Illinois) and expressed
as the mean± standard deviation (SD). The values reported
in the figures represent the means of an experiment re-
peated at least three times. P ≤ 0.05 was considered sig-
nificant.

3. Results

3.1. Effects of AZD2461 and its combination with VPA on Hela
Cells

Both AZD2461 and VPA were able to decrease the via-
bility of Hela cells in a time and concentration-dependent
manner (Figure 1A and 1B) with IC50 values of 2.82 mM
for VPA and 45.5 µM for AZD2461 following 48 hours treat-
ment. Nevertheless, MTT result revealed that the combina-
tion of these inhibitors not only did not exert additive or
synergistic effects, but also demonstrated mild antagonis-
tic effects in previously described ranges (CI > 1.1). Dose-
response plot, combination index plot, isobologram plot,
median-effect plot, and polygonogram (at Fa = 0.5) for co-
treatment with AZD2461 and VPA are depicted in Figure 2D
- 2F, respectively. CI values of different effective doses (EDs)
of both inhibitors were higher than 1.1 (Figure 2G). Conse-
quently, co-treatment with AZD2461 and VPA was not found
to be efficacious in reducing cell proliferation of Hela cer-
vical cancer cells.

3.2. Analysis of Cell Morphology

As shown in Figure 2, following 48 hours of treatment
with AZD2461 (45.5µM), VPA (2.82 mM), and AZD2461 + VPA
(45.5 µM + 2.82 mM), the number of viable Hela cells ap-
parently decreased compared to untreated cells, indicat-
ing that co-treatment with two inhibitors resulted in the
increased rate of cell death. In addition, alterations in
cell morphology such as shrinkage, rupture of cell mem-
branes, and dropsy were evident in all three experimental
groups.

4. Discussion

Genotoxic agents can block the replication fork during
DNA replication process that leads to DSB formation (25).
Hence, DNA damage response (DDR) of tumor cells against
agents targeting DNA is expected to determine the effi-
ciency of newly developed anti-cancer drugs. Alterations
in DNA repair pathways could be the primary reason for
special tumor cells to be dependent on limited DNA re-
pair pathways to escape cell death. Moreover, mutations in
DNA repair genes are proven to be associated with higher
sensitivity of some tumor cells to certain DNA repair tar-
geting agents such as PARP inhibitors (PARPi) since Poly
(ADP-ribosyl) ation catalyzed by PARP1 is a prompt DNA-
damage-dependent post-translational modification of nu-
clear proteins (i.e., histones HI, H2A, H2B, H3, and H4) that
is essential for survival of damaged proliferating tumor
cells (26). In 2010, Loser et al. discovered that null ATM-/-,
Artemis-/-, and Ligase IV-/-p53-/-Hela cells display different
responses compared to WT cells to low concentrations of
two PARPi olaparib and KU55933, highlighting the impor-
tance of germline mutations of these genes in DNA repair
pathway efficacy and clonogenic survival of Hela cells (27).
In addition, a study conducted by Dejligbjerg et al. showed
that VPA was able to exert anti-tumor effects in Hela cells
due to its function as a class I-specific HDAC inhibitor (28).
Another experiment declared that VPA inhibits the pro-
liferation of Hela cervical cancer cells through the activa-
tion of caspase-dependent pathways (19). Hence, no former
study was done to assess the effects of the combination of
PARPi and HDACi on cervical cancer cells while it seems es-
sential to determine whether the effects of this combina-
tion are tumor specific and whether the therapeutic ben-
efit can be predicted by the integrity of DNA repair path-
ways.

In contrast to an experiment conducted by Deben et
al. (29), in which a combination of olaparib as a PARPi and
APR-246 (PRIMA-1MET) synergistically induced cell death in
P53-null lung cancer cells, our findings suggest a mild an-
tagonistic interaction between VPA and AZD2461 Hela cells
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Figure 1. Concentration-response effects of AZD2461 and VPA on Hela cells using MTT assay following 48 hours treatment with both agents separately (A, B) and in combination
(C) depicted by GraphPad Software. Dose-response plot (D), combination index plot (E), isobologram plot (F), median effect plot (G) and polygonogram (H) for co-treatment
with AZD2461 and VPA are depicted by Compusyn software. Different effective doses (EDs) of VPA and AZD2461 combination indicate a mild antagonism (CI > 1.1) (G) as Hela
cells were treated with various combinations of both inhibitors.

Figure 2. Morphological alterations of Hela cells treated with IC50 values of AZD2461, VPA, and their combination following 48 hours of incubation. A reduction in the viability
of AZD2461/VPA treated cells is evident compared to Hela untreated cells.

at all effective doses (CI > 1.1). Thus, this combination reg-
imen was not able to effectively reduce Hela cells prolifer-
ation. Stankovic et al. reported that the combinatory ef-
fect of PARP inhibition and existing low-toxicity chromatin
modifying agents (HDACi) could sensitize CLL tumors with

DNA damage response defect (30). Konstantinopoulos
et al. assessed the possible combination efficacy of ola-
parib and SAHA (Suberoylanilide hydroxamic acid) as a
classic HDACi in ovarian cancer cells. It was concluded that
SAHA could enhance olaparib anti-tumor activity by tar-
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geting homologous recombination DNA repair by decreas-
ing Rad51 and BRCA1 expression. Combined with olaparib,
SAHA induced apoptosis and pH2AX expression to a greater
extent than either drug alone (31). Although many inves-
tigations reported that combining PARP inhibitors with
other proliferation inhibiting agents could lead to better
therapeutic results compared to monotherapeutic strate-
gies (21), our findings call for further investigations regard-
ing the evaluation of invasion-suppressing effects of the
combination of VPA and AZD2461, using in vitro invasion
assays. In addition, any alterations in the expression pat-
terns of the genes involved in DNA repair or cell death path-
ways (i.e., caspase family, Beclin1) can be assessed using
the real-time-PCR method. We will look forward to verify-
ing our results by evaluating protein levels of some major
apoptotic/necrotic genes besides confirming these data by
flow-cytometric analysis or TUNEL assay for the detection
of the type of cell death.
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