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Abstract

Background: Among water pollutants, Natural Organic Matters (NOMs) are highly important for making problems in water treat-
ment plants.
Objectives: The main objective of this study was to investigate the efficiency of photocatalytic degradation of humic acid using
magnetic nanoparticles (Fe-doped TiO2@Fe3O4) in aqueous solutions.
Methods: In the present experiment, Fe-doped TiO2@Fe3O4 nanoparticles were synthesized by the sol-gel method, and SEM, XRD,
and DRS analyzes were utilized to characterize the synthesized nanoparticles. The effects of various variables, including pH (3 - 11),
initial concentration of humic acid (20 - 80 mg/L), and concentration of nanoparticles (250 - 2000 mg/L) at different reaction times
(15 - 60 min) were investigated on the photocatalytic degradation of humic acid.
Results: The maximum degradation efficiency of humic acid at pH 3, the initial humic acid concentration of 5 mg/L, nanoparticle
dose of 400 mg/L, and reaction time of 60 min using a 15-W bare UV lamp.
Conclusions: Due to the high efficiency of photocatalytic degradation, it is proposed to use for the removal of humic acid from
water resources.
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1. Background

Among water pollutants, Natural Organic Matters
(NOMs) are highly important for their problems in water
treatment plants. Natural organic matters are a mixture of
organic compounds that originate from natural and syn-
thetic sources and vary in reactivity, structure, and color.
The importance of NOMs in drinking water was formerly
due to aesthetic and colorless purposes that raised con-
sumer protests. However, today, they are mainly used be-
cause of non-degradability and formation of Disinfection
Byproducts (DBPs), e.g., Trihalomethanes (THMs), that are
often carcinogenic (1). Knowledge and experiments show
that hydrophobic compounds are most effective in the for-
mation of precursors and subsequently, DBPs. Hydropho-
bic compounds may also play a pivotal role in the forma-
tion of novel compounds in water with low humic sub-
stances. Some of these compounds may be much more
toxic than chlorine components (2).

Different methods are used to remove organic pollu-
tants from water and wastewater environments such as

adsorption onto adsorbents and membrane or biological
methods, each of which has disadvantages including prob-
lems with chemical and biological sludge, the limited ad-
sorption capacity of adsorbents, the need for replacement
of adsorbents, adsorbent regeneration, problems with ex-
ploitation of membrane filters and membrane blockage,
or toxic effects of contaminants on biological systems. An-
other approach to removing organic and persistent pollu-
tants from water and wastewater environments is the use
of conventional and advanced oxidation methods. Unlike
conventional oxidation, advanced oxidation methods lack
the above-mentioned disadvantages due to the production
of highly oxidizing free radicals and the ability to degrade
and mineralize organic compounds to prevent the forma-
tion of toxic secondary compounds (1, 3, 4).

Among advanced oxidation methods, catalytic oxida-
tion has received much attention since the advent of
nanocatalysts. In catalytic oxidation methods, nanocata-
lysts are used to degrade pollutants. In Photocatalytic Ox-
idation (PCO), pollutants are converted into low-risk prod-
ucts at a particular state of the process performance (a
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certain range of pollutant concentrations, humidity, etc.),
which is one of the goals of researchers (5). In photocat-
alytic oxidation, semiconducting metal oxides and sulfides
are used in pure or doped forms. Common photocatalysts,
including TiO2, ZnO, ZnO, ZnS, CdS, CeO2, ZrO2, SnO2, and
WO3 are doped with a metal or non-metal dopant. The
photocatalytic activity of some semiconductors (e.g., WO3,
ZnS) has been tested thus far, but the results have been
mostly disappointing when compared to TiO2. Therefore,
TiO2 nanoparticles are suitable for the photocatalytic oxi-
dation process. This is due to the unique characteristics of
titanium dioxide, such as low cost, safety, and chemical sta-
bility.

The use of TiO2 is limited due to structural properties
such as the wide bandgap (3.2 eV), low quantum efficiency,
and electron-hole recombination. The currently used pho-
tocatalytic modification techniques include doping with
metal ions (e.g., Mn2+, Ni2+, Zn2+, Ag, Au, Pt, Fe2+, etc.)
and non-metal elements (e.g., B and N), color sensitization
(sensitization with surface complexes), sensitization with
polymers, and formation of heterogeneous nanoparticles
with other semiconductors. However, among the above-
mentioned methods, doping with metal ions has shown
the best results. Among different metals used in doping
methods, Fe3+ is suggested as a dopant of choice due to
half-filled configuration, the high similarity of its ionic ra-
dius (0.645 Å) to that of Ti4+ (0.604 Å), and easy bonding
to the crystalline structure of TiO2 (inhibition of electron-
hole recombination) (6-10).

One of the problems with in-vitro and in-vivo uses of
nanoparticles is their removal from solutions. Therefore,
the introduction of nanoparticles that can absorb wide-
range wavelengths, undergo photocatalytic degradation
and are easily removed from the solution after the reac-
tion is of great importance. The current study aimed at syn-
thesizing and facilitating the application of Fe-doped TiO2

nanoparticles in-vitro and in-vivo (e.g., water and wastewa-
ter treatment plants) since they have a narrower bandgap
than pure TiO2 and also have good magnetic characteris-
tics for removal from the solution.

2. Objectives

This study aimed to survey the efficiency of photocat-
alytic degradation of humic acid using magnetic nanopar-
ticles (Fe-doped TiO2@Fe3O4) in aqueous solutions.

3. Methods

3.1. Synthesis of Magnetic Iron Oxide (Fe3O4) Nanoparticles

In the current study, humic acid was purchased from
Sigma Aldrich. Other chemicals were purchased from

Merck (Germany). Chemical methods, especially co-
precipitation, are the most common approaches to pro-
duce magnetic nanoparticles (especially magnetite and
maghemite). For this purpose, 2 g of FeCl2 and 5.12 g of
FeCl3 were added to 200 mL of distilled water. The mixture
was stirred at 600 rpm. Then, 1.5 mM ammonia was drop-
wise added to the solution until reaching pH > 8. Then, a
black precipitate was formed in the solution. Nitrogeniza-
tion and solution stirring continued for two hours after
adding ammonia. After the completion of the reaction, the
obtained nanoparticles were washed several times with
distilled water and dried at room temperature (11).

3.2. Synthesis of Fe-doped TiO2@Fe3O4 Nanoparticles

In the current study, the sol-gel method was used to
synthesize Fe-doped TiO2@Fe3O4 and Fe-doped TiO2 cata-
lysts. To synthesize the nanoparticles, certain amounts of
Fe3O4, 2-propanol, deionized water, and HNO3 were poured
into a flat-bottom balloon and stirred with a magnetic stir-
rer for 15 min until completely mixed (solution #1). In
another Erlenmeyer flask, certain amounts of titanium
(IV) isopropoxide, 2-propanol, and Fe3O4 were mixed with
a stirrer to form a homogeneous solution (solution #2).
Then, solution #1 was dropwise added to solution #2 while
mixing. After 30 min of mixing of both solutions (solu-
tions #1 and #2) and the formation of the sol, the balloon
containing sol was left in the laboratory at room temper-
ature for five hours until the gel with high strength and
adhesion was formed. The prepared gel was dried in the
oven at 80ºC for 24 h, and then the gel powder was cal-
cined at 500ºC for one hour after washing several times
with distilled water (12). We used SEM, EDX, FT-IR, XRD,
VSM, BET, and DRS to characterize the synthesized Fe-doped
TiO2@Fe3O4 nanoparticles.

3.3. Photocatalytic Activity of Prepared Nanoparticles

In this step, the effects of various variables such as pol-
lutant concentration, Fe-doped TiO2@Fe3O4 nanoparticle
concentration, UV exposure time, and initial pH of the so-
lution were investigated on the efficiency of the photocat-
alytic process. A 15-Watt UVC lamp was used in the current
study. To perform the photocatalytic process, we prepared
250 mL humic acid at different concentrations (5, 10, 15,
and 20 mg/L) and pH values (3, 5, 7, 9, and 11). Sodium hy-
droxide and sulfuric acid (0.1 N) were utilized for pH ad-
justment. Then, certain amounts of Fe-doped TiO2@Fe3O4

nanoparticles (50, 100, 200, and 400 mg/L) were added.
The prepared suspensions were placed in the dark for 30
min before exposure to UV light and the start of the photo-
catalytic process to reach the adsorption-desorption equi-
librium. Then, the suspensions were sampled at differ-
ent time intervals. After the separation of photocatalytic
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nanoparticles, the residual humic acid content was mea-
sured by a TOC meter model ANATOC SERIES II.

4. Results and Discussion

4.1. Scanning Electron Microscopy Analysis

Scanning Electron Microscopy (SEM) is suitable for ap-
proximating nanoparticles’ shape and size distribution.
Figure 1 shows the SEM images of Fe3O4, Fe-doped TiO2, and
Fe-doped TiO2@Fe3O4 catalysts. The surface morphology of
nanoparticles showed no obvious difference and the parti-
cles tended to accumulate in all samples. It could be due to
the magnetic properties and fineness of the nanoparticles
(13).

4.2. X-ray Diffraction Analysis

An X-ray Diffraction (XRD) spectrophotometer was
used at the wavelength of 1.55418 Å to determine the crystal
structure, size, and phase of the formed nanoparticles. Fig-
ure 2 shows the XRD spectra of Fe-doped TiO2 and Fe-doped
TiO2@Fe3O4 nanoparticles at 10º - 80º (2θ).

The crystal size of the synthesized nanoparticles was
calculated in all samples using the Debye-Scherrer equa-
tion, as follows:

(1)D =
Kλ

βcosθ

where D is the mean diameter of the crystallite in nm,
K is the refractive index of crystals (that is constant and
usually equal to 0.9), λ is the X-ray wavelength used for
XRD analysis (in the current study, 1.55418 Å), θ is the an-
gle of diffraction in degrees, andβ is the Full Width at Half
Maximum (FWHM). As shown in Figure 2, the XRD spec-
trum of synthesized TiO2 had large, sharp peaks, indicat-
ing good crystalline structures of synthesized nanoparti-
cles. The peaks at 25.32, 37.78, 47.98, 54.20, 55.02, 62.11, 69.21,
70.48, and 75.23 confirmed the crystalline anatase phase of
Fe-TiO2.

Choi et al. studied the effect of different doping pro-
cedures on the phase transition from anatase to rutile
and showed that small-radius dopers could directly inte-
grate into the TiO2 crystalline lattice and form further the
anatase phase, which has more photocatalytic activities
than other phases (14). As shown in Figure 3, no Fe-related
peak was observed in Fe-doped nanoparticles, which con-
firms that the TiO2 crystalline structure did not change sig-
nificantly. Eadi et al. reported that the absence of a signifi-
cant peak after the doping process could be due to the con-
centration of doped iron lower than detectable limits. On
the other hand, due to the similarity of the ionic radius of
Ti4+ (0.604Å) and Fe3+ (0.645 Å), some sites of the TiO2 lat-
tice likely occupied by Fe ions (8, 15).

Rahul Reddy et al. showed that the substitution of iron
in the crystalline lattice of TiO2 could lead to the reduc-
tion of the rutile phase, which may also be due to the re-
duction of oxygen sites on the surface of TiO2, thus pre-
venting crystallization at other phases (16). On the other
hand, an increase in the amount of iron could change re-
flections to narrower angles due to the replacement of Ti4+

with slightly larger Fe3+ (17). Kamani et al. reported that the
anatase peaks became wider in samples, which can be due
to the change of the absorption edge to the visible spec-
trum (12). According to the Fe3O4 nanoparticles graph, the
diffraction peaks of 30.16, 35.36, 43.13, 54.57, 56.92, and 62.51
can be related to diffraction from the centered cubic lat-
tice.

4.3. Diffuse Reflective Spectrum

The Diffuse Reflective Spectrum (DRS) analysis is used
to measure the reduction of the energy gap after doping of
doped elements into the structure of synthesized nanopar-
ticles. Figure 4 shows the absorption spectrum of two sam-
ples synthesized at 300 - 800 nm wavelengths. In addition,
the bandgap of the nanoparticles can be determined us-
ing the DRS analysis data, the Kubelka-Monk function, and
the Tauc method, followed by plotting ahv1/2 against the en-
ergy of the absorbed photons in hv.

(2)(ahv) = A (hv − Eg) r

where a is the absorption index, h is the Planck con-
stant, v the light frequency, A is the absorption constant,
Eg is the nanoparticle bandgap, and r is the optical trans-
mission process.

The comparison of TiO2 nanoparticles synthesized
without doping with commercial TiO2 with a bandgap of
3.2 eV indicated that the sol-gel synthesized nanoparticles
had a lower bandgap. This difference could be due to in-
fluencing parameters during the synthesis of nanoparti-
cles. Therefore, nanoparticles synthesized by the sol-gel
method had better catalytic properties than commercial
TiO2 (18, 19).

According to Figure 4, iron doping and magnetization
of TiO2 caused the absorption wavelength to be shifted
to larger wavelengths and get closer to the visible spec-
trum. Also, the decrease in the bandgap could be due to
the reaction of the third orbital of Ti and the d orbital of
Fe, where the intermediate placement of iron in TiO2 pro-
duced an additional energy balance between the capac-
itance and the conductivity layers of TiO2 nanoparticles.
The iron doped in the structure of TiO2 acted as an interme-
diate energy balance, reduced the bandgap, and changed
the absorption of light into the visible spectrum (8, 15).
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Figure 1. Scanning electron microscopy images of (A) Fe3O4 , (B) Fe-doped TiO2 , and (C) Fe-doped TiO2@Fe3O4
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Figure 2. The X-ray diffraction spectrum of Fe3O4 , Fe-doped TiO2 , and Fe-doped
TiO2@Fe3O4

4.4. Effect of pH Values

Figure 3 shows the effect of pH on the humic acid de-
composition under acidic, neutral, and basic conditions
at different time intervals when other variables were con-
stant. The results showed that the efficiency of humic acid
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Figure 3. Influence of initial pH values

removal increased under acidic conditions and reached its
maximum at pH 3, but decreased at basic and neutral pH
values.

The solution pH is an important factor in photocat-
alytic and sonocatalytic processes through affecting the
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Figure 4. The diffuse reflective spectrum of Fe-doped TiO2 and Fe-doped TiO2@Fe3O4

absorption of organic compounds on the catalyst surface,
as the sonophotocatalytic degradation process often oc-
curs on the catalyst surface (20). The dominant surface
electric charge of different catalysts in the natural state
may be positive or negative depending on surface proper-
ties, especially surface functional groups and components
of the catalyst. In photocatalytic processes, pHzpc plays an
important role, as, at pHzpc, the positive and negative elec-
tric charges reach the balance on the surface of the catalyst.
By increasing the pH to above pHzpc, the dominant electric
charge on the catalyst surface is negative, and by decreas-
ing the pH below pHzpc, the dominant electric charge on
the catalyst surface becomes positive. The results of the
study by Kamani et al. showed that in advanced oxida-
tion processes, the solution pH had a significant effect on
the production of hydroxyl radicals as powerful oxidizing
agents (21). The pHzpc of TiO2 ranges from 5.6 to 6.4. There-
fore, the surface charge of Fe-doped TiO2 was positive when
pH < pHzpc, negative when pH > pHzpc, and neutral when
pH = pHzpc, according to Equations 3

(3)−T iOH ←→ T iO− +H+

(4)−T iOH +H+ ←→ T iOH2+

Also, the structural characteristics of pollutants and
intermediate oxidation products are changed when pH
changes (18, 22).

Li et al., in the study of humic acid degradation by
the photocatalytic process, showed that the maximum re-
moval efficiency was obtained at acidic pH values. At acidic
pH values, molecular humic acid is easily degraded by hy-
droxyl radicals. As the pH increases, the removal efficiency
decreases, which may be due to the Scavenger effect of hy-
droxyl ions, because as the pH increases, the concentra-
tion of hydroxide ions (OH-) increases that subsequently
react with some efficient radicals to form water molecules.
In addition, at higher pH values, the electrostatic repul-
sion forces between humic acid and the catalyst surface in-
crease, and the humic acid removal decreases (20).

Under acidic conditions, iron is degraded through
both direct and indirect ways, directly by the reductive pro-
cess and indirectly by the hydrogen production pathway
in the iron oxidation cycle, both of which are performed
better under acidic conditions. In addition, the Fenton-
like process performs better in acidic conditions, which in-
creases the removal efficiency. The gravitational forces be-
tween the catalyst and humic acid increase in acidic con-
ditions and improve the absorption of humic acid on the
photocatalyst surface while under basic conditions, the
repulsion forces between humic acid and the catalyst de-
crease absorption and degradation rates (18).

4.5. Effect of Initial Humic Acid Concentration

After determining the optimum pH, the effect of dif-
ferent humic acid concentrations was investigated on the
removal efficiency. Different initial concentrations of hu-
mic acid were 5, 10, 15, and 20 mg/L. Figure 5 shows the ef-
fect of different initial concentrations of humic acid on its
removal efficiency. The maximum efficiency occurred at
lower initial humic acid concentrations, and the removal
efficiency decreased with increasing the pollutant concen-
tration. Li et al., in a study of the photocatalytic degrada-
tion of humic acid obtained a similar result and showed
a significant decrease in efficiency with an increase in pol-
lutant concentrations (20). Tabasideh et al., in a study of
the sonophotocatalytic degradation of diazinon using Fe-
TiO2 nanoparticles in aqueous solutions at different ini-
tial concentrations of diazinon (10, 20, 30, 40, 60, and 100
mg/L), concluded that the removal efficiency decreased by
increasing diazinon concentration (23).
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Figure 5. Effect of initial humic acid concentration (pH 3, catalyst concentration 100
mg/L)

According to evidence of the effect of the initial pol-
lutant concentration on the degradation process, the re-
duction in efficiency following an increase in the pollu-
tant concentration can be due to some reasons. First,
during the oxidation reaction, the intermediate products
are formed due to the degradation of the pollutant; at
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higher concentrations, the competition increases between
pollutant molecules and intermediate products to occupy
the nanocatalyst surface active sites. Thus, by occupy-
ing some active sites by intermediate products, fewer pol-
lutant molecules can bind to the active sites. Second,
produced hydroxyl radicals react with both humic acid
molecules and intermediate products, thereby decreasing
the effectiveness of sonocatalytic degradation, while the
concentrations of hydroxyl radicals produced during the
oxidation process are constant (24).

The results of the study by Mohammadi et al. showed
that as the concentration of the pollutant increases, more
pollutant molecules adhere to the catalyst surface and
occupy the active sites of the catalyst, thereby reducing
the formation of hydroxyl radicals. Sohrabnezhad et al.
showed that increasing the concentration of pollutants
can increase the absorption of light and decrease the num-
ber of photons reaching the catalyst surface, thereby de-
creasing the stimulation of catalytic nanoparticles and
production of hydroxyl radicals (25, 26).

4.6. Effect of Fe-doped TiO2@Fe3O4 Concentration

One of the most important parameters affecting the
optimum efficacy of hybrid and catalytic oxidation pro-
cesses is the nanoparticle or catalyst dosage used in the
process. Four different concentrations (50, 100, 200, and
400 mg/L) were used to investigate the effect of TiO2 con-
centration. Figure 6 shows the effect of different concen-
trations of nanoparticles on the photocatalytic degrada-
tion of humic acid. As shown, the degradation increased
with increasing the concentration of nanoparticles.
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Figure 6. Effect of Fe-doped TiO2@Fe3O4 concentration (pH 3, initial humic acid con-
centration 5 mg/L)

The study by Geng et al. on the sonophotocatalytic
degradation of humic acid showed that the removal effi-
ciency increased with increasing the catalyst concentra-
tion from 0.25 to 1.00 g/L. The reason for this finding
could be many available active sites and more humic acid
molecules absorbed on the surface of the catalyst, which

ultimately resulted in the increased degradation efficiency
(27). The study by Fallah Shojaei et al. showed that dye
removal efficiency increased by increasing the concentra-
tion of doped magnetic TiO2 nanoparticles from 10 to 30
mg/L (28). The results of the study by Ezzatahmadi et al. on
the degradation of 2,4- dichlorophenol using palygorskite-
supported Fe/Ni nanocomposite showed that the removal
efficiency increased with increasing nanoparticle concen-
tration since the number of active sites on the catalyst sur-
face and formation of hydroxyl radical were greater (29).

4.7. Conclusion

The current study aimed at evaluating the efficacy of
photocatalytic oxidation for humic acid removal in aque-
ous environments using Fe-doped TiO2 magnetic nanopar-
ticles. In the study, the effects of various parameters in-
cluding pH, initial humic acid, and initial synthesized
nanoparticle concentrations were investigated. The dif-
ferent analyses of the synthesized nanoparticles showed
that the nanoparticles had good uniformity and disper-
sion. The surface morphology of the nanoparticles showed
that they tended to accumulate. In the XRD analysis,
the large and sharp peaks confirmed the good crystalline
structure of the synthesized nanoparticles. Doping of iron
into the structure of TiO2 changed the absorption wave-
length to higher wavelengths, closer to the visible spec-
trum. The maximum removal efficiency of dichlorophenol
was achieved using a 15-W UVC lamp in optimum condi-
tions of pH 3, initial humic acid concentration of 5 mg/L,
doped magnetic nanoparticle dosage of 400 mg/L, and 60
min reaction time. Therefore, due to the high efficiency of
the photocatalytic process, its application is suggested for
the removal of humic acid in water purification processes.
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