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Abstract

Background: It is extremely useful to construct mathematical models to forecast and control real phenomena. One of the com-
mon applied statistical models to represent the data involving with time is the time series modeling. A novel time series model to 
represent the propagation of an epidemic infection in a population is presented. The model deals with addressing the cumulative 
number of confirmed cases.
Methods: Our model is the generalization of statistical exponential growth models and can describe different stages of the outbreak 
of a communicable disease. Applying the mentioned procedure leads to models CVJR1 (3.2, 1.44, 3, 13) for modeling the sequence of 
COVID-19 from January 13 to March 5. All computations and 200 simulations were done in MatLab 8.6.
Results: For comparing candidates through fitting the dataset for six pairs of (l̂ and â), we used the minimum criterion square of 
residuals. We present the average and 90% upper and lower bounds of the predictions made by our models for three periods. 
Applying the mentioned procedure led to having models with parameters (3.2, 1.44, 3, 13) for modeling the course of COVID-19 from 
January 13 to March 5.
Conclusions: The presented model can cover the epidemic behaviors related to social networks. Our model can be adjusted to 
worldwide modeling for modeling a phenomenon spreading in different populations simultaneously.

Keywords: Epidemic, COVID-19, SARS, Model, Spreading, Estimation

1. Background

Contagious diseases are a major cause of human suffer-
ing in terms of both morbidity and mortality. The essence
of these diseases is their transmission, which is the main
subject of studies addressing the issue in various science
branches. One of the approaches to query in this subject
is the mathematical one. Mathematical models are cari-
catures of real systems that aim to capture the fundamen-
tal mechanisms of some processes to explain observations
or predict outcomes (1). The idea of formulating the trans-
mission and spread of infectious diseases in mathematical
language is relatively old. Its history backs to 1760 when
Bernoulli (2) published an article to describe the effects of
smallpox variolation on life expectancy using mathemati-
cal life table analysis (3). The modern mathematical mod-
eling, initiated in 1920, has evolved over the years in an im-
pressive body of works, whose culmination can be found
in Anderson et al. (4).

For modeling a communicable disease, there are two
main approaches founded on the time as the basis and

independent variable: the macro-dynamic and micro-
dynamic approaches. The classic model that ignores the
structure of the population and views the population as a
generality is of the former group, and the network models
that focus on the interactions of individuals of the popula-
tion and stress the importance of configuration of the pop-
ulation in details are of the latter group (1).

From another point of view, there are two main ap-
proaches to dealing with an epidemic model: determin-
istic and stochastic. The network models are the most
known in the stochastic class. There are some examples
of this class in the literature (5-8). The differential equa-
tion models (ODE and PDE), including the KM model (9)
and statistical exponential growth models, are two known
families of deterministic models. Time series models can
be categorized as stochastic macro-dynamic models. In ad-
dition, to some extent, time series modeling in epidemio-
logical applications is restricted to ARIMA models (10-12).
Finally, it is worth saying that there are some novel meth-
ods in this area, including artificial intelligence methods
and two-part time series (13, 14).
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To the extent of our knowledge, the models intro-
duced so far are restricted to modeling some periods of
the outbreak of the disease. This drawback motivated us to
present a new model. We presented a novel model, which
is more convenient than graphical models, and it is compe-
tent enough to cover epidemiological spreading and epi-
demic behaviors related to social networks like the pattern
of the number of users of Facebook, the number of con-
firmed cases of SARS in China, and the number of COVID-19
cases worldwide.

Our stochastic model is flexible enough to cover differ-
ent stages of a communicable disease from the initial stage
with an intense growth through the stage of identification
and then implementation of prevention and control mea-
sures to its retreatment and discovery of treatment. This
flexibility is well illustrated by plots that show the effect of
changing each of the parameters of the model on its behav-
ior (Figure 1).

The presumption of utmost importance about our
time series model is that in the beginning, the disease
spreads exponentially and as time goes by, the rate of tran-
sition (λ), the reproductive number (R0), or the rate of the
growth of the number of infected individuals (R in our
model) tends to fall. This presumption is a common fact in
all known epidemic models. Britton et al. (15) mention this
point as a challenge regarding the modeling of the out-
break of communicable diseases. The mentioned behavior
is observed in connection with the time series of several
infected cases of SARS 2003, the timeline of the number
of people using social media platforms and the internet,
worldwide or nationwide, and the time series of MERS out-
break in South Korea and Saudi Arabia between 2013 and
2020. Also, this assumption is met by the time series of the
positive cases of COVID-19. For example, in 10 days from Jan-
uary 22, the number reached from 580 to 11,950 (over 20
times or more than 1900% growth), while this number over
10 days from February 22 increased from 78,651 to 88,590
(about 13%). Based on this reality, we classify the behavior
of infection spreading into three stages:

Stage 1. The initiation of the disease (This stage in the
following formulation is considered as step 1).

Stage 2. The beginning of the awareness, precaution,
and control measures (This stage is step 2 in the following
formulation).

Stage 3. The phase of the retreatment of the disease
(This stage includes steps 3, 4, 5, and so on in the formu-
lation).

To the best of our knowledge, mathematical epidemic
models mainly address stage 1, and in the most advanced
cases, deal with stage 2.

In comparison with graphical models, our model is ex-
plicitly time-oriented. Also, it is more flexible and more

convenient. One of the main problems in applying ran-
dom network models is the entrance of the infection to
new populations. For example, COVID-19 has arrived in
over 140 countries up to now. Therefore, to model it graph-
ically, it is required to have 140 different graphs connected
(or at least, five different graphs for China, South Korea,
Iran, Italy, and Japan). It is noticeable that our model is
more flexible and more informative than non-graphical
models. In addition, the present model gives information
on the stage of intensity and the process of change in the
stages of intensity.

2. Methods

2.1. Presumptions of the Model

The model is based on the following presumptions:
The number of susceptible individuals is proportional

to the rate of growth (the relative increment).
The rate of growth is fixed in the first days of the prop-

agation; therefore, the cumulative number of confirmed
cases follows an exponential trend.

The trend of time series of growth rate is decreasing. At
first, it faces a significant sudden decrease, and then it falls
gradually.

Several successively lower growth rates lead to lower
growth rates in the following days (due to increasing the
steps or stages).

Based on the presumptions, the model is not suitable
to represent the propagation of epidemics in which after
some severe limitations (quarantine, staying home, social
distancing, etc.), the condition of the population comes
back to the previous status. To model this sort of epi-
demics, we need to update the model by changing the step
of the model.

2.2. Mathematical Definition of the Model

We present a model to cover all the three stages; CVJR1
(a, R, l, b). This model is a stochastic process (time series
model) with four parameters:

a: Representation of the decreasing probability of the
rate of spreading corresponding to different items in a
specified step.

We assume that the probability of acute outbreaks de-
creases exponentially, and conversely, the probability of
mild and gradual increments increases.

R: The rate of the growth in the initial days (the first b
days) of the spreading.

It is worth noting that one of our model’s presump-
tions is that the number of infected cases rises exponen-
tially in the first b days. Thereafter, R, which depends on
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Figure 1. A, The first scenario for the effect of the values of parameters on realizations of the model, the average curves of CVJR (a, 1.8, 4, 15), for a = 1.2, 1.7, 2.0, 2.5; B, the second
scenario for the effect of the values of parameters on the realizations of the model, the average curves of CVJR1 (1.7, R, 4, 15), for R = 1.5, 1.7, 1.8, 1.9, 2.0; C, the third scenario for
the effect of the values of parameters on the realizations of the model, the average curves of CVJR1 (1.7, 1.8, l, 15), for l = 3, 4, 5; D, the fourth scenario for the effect of the values of
parameters on the realizations of the model, the average curves of CVJR1 (1.7, 1.8, 4, b); for b = 14, 15, 17.

parameters a and l, falls. The role of R in our model is anal-
ogous to the role of R0 andλ in macro-dynamic and micro-
dynamic models, respectively.

l: The number of days of absence of the more intense
epidemiological behavior of the disease that ensures us
that the level of the spreading of the infection has de-
creased by one step (The criterion for specifying the retreat
of the disease from a more intense step to a less intense
step).

b: The number of the first days that the infection faces
no resistance or control.

Our model is formulated as follows:
I. The Initial Condition:

Step1 = Step2

= · · ·
= Stepb

= 1

Health Scope. 2020; 9(3):e102837. 3
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and

Stepb+1 = 2

Item1 = 1

U (1) = U (2)

= · · ·
= U (b− 1)

= 0

X1 = 1

II. The Evolution Law:

Step(t+1) = Stept +

l∏
j=1

U (t− j)

t = b+ 1, b+ 2, . . .

Item(t+1) = 1 + Itemt (1− Stept+1 + Steptt)

t = b, b + 1, . . .

U (t+ 1) ∼ Bernouli
(
e−a× Item(t +1)

)
t = b, b+ 1, b+ 2, . . .

Xt+1 = Xt

(
1− 1

RStep(t+1)+U(t+1)−1

+
1

RStep(t+1)+U(t+1)−2

)

t = 2, 3, 4, . . . .

Therefore, we can classify this model as an autoregres-
sive multivariate time series.

Xt: The number of infected individuals up to time t.
Stept: Determining the phase of the outbreak of the dis-

ease.
As mentioned before, by this indexing, steps 3, 4, and so

on are considered together as the step of retreat or stage 3
of the infection (in this case, COVID-19).

Itemt: The item of the disease in a special step.
Here, the variable item is more detailed and more

partial than the variable step. By variable item, we are
equipped with a tool to meet the decreasing trend of the
rate of transition, reproductive number, or growth rate
during a specified step.

U(t + 1): A function whose input is the variable item to
determine the intensity of the spread of the disease during
a time unit (in this model, the time unit is taken as one day,

and it can be replaced with one month, one week, one hour,
and so on).

The computations and simulations of the paper were
done in MatLab 8.6. Throughout the paper, each curve is
obtained through 200 simulations. In all figures, the X and
Y axes represent the days and the number of confirmed
cases, respectively.

Four scenarios illustrate the flexibility of our model
and its capacity to cover a great variety of real datasets (Fig-
ure 1A-D).

Increasing a leads to descending the probability of
acute growth periods; therefore, the plot becomes smooth
earlier and the range of the axis Y decreases. The lower the
parameter a is, the more the intensity of the outbreak of
the disease is. As R increases, the growth rate of the number
of infected cases goes upper. Therefore, the height of the
plot rises, and the slope of the plot increases. According to
this model, by declining l, the condition for the change in
phases (retreat of the process) gets harder. Therefore, the
plot tends to increase by a higher acceleration. Finally, b is
the length of the most intense spread. Then, the more the
value of b is, the more the increase in the number of cases
will be. To illustrate the novel method, let (a, R, l, b) = (0.9,
2.5, 4, 11). Our model suggests the first stage of the spread-
ing of infection (Table 1).

The continuation of spreading (stage 2) is sometimes
like its previous phase and sometimes like its current
phase (Table 2).

Since the parameter l is taken equal to 4, four consecu-
tive 1s lead to a movement from step 2 to step 3 (generally,
from step n to step n + 1). Accordingly, the results show the
continuation of the process during stage 3 (Table 3). The
evolution in step n is similar to the second step, but in this
step, 1 and 0 correspond to n - 1 and n - 2 steps before, respec-
tively.

It is noticeable that the variable run presents the num-
ber of consecutive 1s (less acute outbreak). It is observed
that happening zero for the variable U or increasing the
steps makes this variable equal to zero immediately. Ac-
cordingly, the following sequence is obtained as a realiza-
tion of our model:

1, 2, 6, 16, 39, 98, 244, 610, 1526, 3815, 9537, 23842, 38147,
61035, 97656, 156249, 193749, 240249, 297909, 476655,
591052, 732904, ...

By repeating this procedure, we can obtain 15 realiza-
tions (Figure 2).

Now, we address the flexibility of the introduced model
that enables the model to represent a wide range of epi-
demic data. The validity of the model is assessed in two
ways: the ability to model past observations and the va-
lidity of predictions of the model. The former is illus-
trated by Figure 3, while Figure 4 implies the latter ability
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Table 1. The Realization of the First Stage of the Outbreak of the Infection According to Our Model (CVJR1)

Day 1 2 3 4 5 6 7 8 9 10 11

Number of cases R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Rounded number 1 2 6 16 39 98 244 610 1526 3815 9537

Table 2. A Realization of the Second Stage of the Outbreak of the Infection According to Our Model (CVJR1)

Item 1 2 3 4 5 6

Current number 9537a 23842 38147 61035 97656 156249

Previous phaseb 3815 9537a 15259a 24414a 39063a 62500

U 0 1 1 1 1

Intensity More less less less less

aThe figures determine the numbers that multiplying them by (1 - R) is equal to the growth of the process.
bPrevious phase is not Xi−1 . It is equal to Xi/R.

Table 3. A Realization of the Third Stage of the Outbreak of the Infection According to Our Model (CVJR1)

Item 1 2 3 4 5 6 7

Current number 156249 193749 240249 297909 476655 591052 732904

Previous phase 62500 77500 96100 119164a 190662 236421 …

Two phases ago 25000a 31000a 38440a 47665 76264a 94568a …

Run 1 2 3 0 1 2 …

U 1 1 1 0 1 1 …

Intensity less less less more less less …

aThe figures indicate the numbers that multiplying them by (1 - R) is equal to the growth of the process.
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0
0 5 10 15 20          25      30     35     40     45    50

×108

Figure 2. Some realizations of the present model with parameters (0.9, 2.5, 4, 11)

of the model. The average curve of the realizations of our
model could fit some known datasets, such as the pattern
of the number of users of Facebook (16), the number of con-
firmed cases of SARS in China (17), and the number of in-
fected cases of COVID-19 worldwide (18) (Figure 3A-C).

3. Results

3.1. Estimation of the Parameters

The best approach to find the estimation of parame-
ters is to combine the mathematical and graphical meth-
ods. The main informative observations to estimate are xt

Health Scope. 2020; 9(3):e102837. 5
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Figure 3. A, The mean curve of CVJR1 (0.75, 1.35, 3, 1) for modeling the sequence of Facebook users from 2014 to 2019; B, the mean curve of CVJR1 (0.6, 1.23, 2, 2) for modeling the
time series of confirmed cases of SARS in China from March 17 to June 17; C, the mean curve of CVJR1 (3.2, 1.44, 3, 13) for modeling the procedure of COVID-19 from January 13 to
March 5.

(observed time series), Drt = rt - 1 = (xt+1 - xt)/ xt, and DDrt,m=
Drt/Drt+m as depicted in Figure 3C, 5, and 6, respectively.

The graphical method is simple and fast, but somehow
immature. The points that the rate falls irreversibly (with-
out recursion to the previous range) can be considered as
the breakpoint, the finish point of a step, and the start
point of another step. For example, in Figure 5, t = 13, and
t = 28 are two change points. It is worth saying that except
for the first breakpoint, the number of steps shifted from

or shifted to, is probably unknown in other breakpoints. 
For example, it is not clear that the lower line in Figure 5 
determines the breakpoint of step 2 to 3, step 3 to 4, or step 
4 to 5.

To estimate R and b, we used the geometric mean of the 
rate of growth of the points belonging to stage 1 (from t = 
1 to t = 13 in Figure 5) and the number of points of stage 1 
(13 in Figure 5) as R̂ and b̂ , respectively. It is noticeable 
that the parameter b is better to be estimated clinically as

6 Health Scope. 2020; 9(3):e102837.
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Figure 4. A, Modeling the first time series using our model (CVJR1), the mean curve, 90% upper bound, and 90% lower bound with parameters (0.75, 1.35, 3, 1) for prediction
of the sequence of Facebook users in 2018 - 2019 (eight units); B, modeling the second time series using our model (CVJR1), the mean curve, 90% upper bound, and 90% lower
bound with parameters (0.6, 1.23, 2, 2) for prediction of time series of confirmed cases of SARS in China, from May 18 to June 17 (30 units); C, modeling the third time-series
using our model (CVJR1), the mean curve, 90% upper bound, and 90% lower bound with parameters (3.2, 1.44, 3, 13) for prediction of the procedure of COVID-19 from February
25 to March 5 (10 units).

we have the following equation:

DRt = R − 1, for t belonging to step 1.
DRt = (R2−i − R1−i) or (R3−i − R2−i), for t be-

longing to steps i > 1.

Based on this calculation, it is reasonable to expect that 
mean of (Drt / Drt+m= R̂) for t in step i and t + m in step i + 1

the length of the non-symptomatic period of the disease. 
Moreover, since our model is the generalization of the sta-
tistical exponential growth models, the methods applied 
to find the exponential rate of growth in that model can be 
helpful.
The next step is to estimate the parameter l. For finding l̂, 
steps 2 and above can be helpful. Regarding the model,

Health Scope. 2020; 9(3):e102837.
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Figure 5. The sequence of Drt from t = 1 to t = 48; two red lines represent two bounds for the irreversible falls (t = 13 and t = 28)
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Figure 6. The sequence of DDrt , m from t = 16 to t = 43 and m = 6 (ignoring the first days of spreading); the red lines represent the geometric mean of the data depicted

Accordingly, we clustered the data into some groups, 
each of which includes m time points. Therefore, the es-
timation of m can be the integer value for m that leads to 
clustering with a geometric mean of (Drt / Drt+m) close to 
R̂. Figure 6 is the representation of the sequence of Drt / 
Drt+m for t = 16, 17, 18, …, 43, and m̂ = 6. The red line is the 
geometric mean of ratios, approximately 1.6. If we set m̂ 
greater than 6, the range of the fraction widens up-ward 
and the geometric mean of the ratios grows. On the other 
hand, taking m̂ less than 6 can result in the shrink-age of 
the figure and fall in the geometric mean.

For the reasons above, we can set m̂ = 6 as the estima-

tion of the mean of the length of a step. Correspondingly, 
the length of a run of the less intense level of spreading in 
a step (as the requisite for going to the upper step) must 
be equal to or less than 6. Therefore, l̂ = 1, l̂ = 2, l̂ = 3, l̂ = 
4, l̂ = 5, and l̂ = 6 are our alternatives. For each of these 
alternatives, we calculated the best-fit estimator for the pa-
rameter a to meet the condition that the length of a step is 
expected to be 6.

In our model, setting p = exp(-a), Table 4 is obtained as 
the representative of changing the probability of spread-
ing intensity for different items of each step.

For the positive integer random variables like the

8 Health Scope. 2020; 9(3):e102837.
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Table 4. Evolution of Probability of Intensity of Growth for the Items of Each Step

Item 1 2 3 … L - 1 l L + 1 …

Probability of more intense p p2 p3 … pl -1 pl pl + 1 …

Probability of less intense 1 - p 1 - p2 1 - p3 … 1 - p1 - 1 1 - pl 1 - pl + 1 …

length of a stage (M), expectations can be calculated with
the equation.

E (X) =
∑∞

i=1
P (X

≥ i)

SinceM ≥ l,

E (M) =
∑∞

i=1
P (M

≥ i)

To calculate this summation, it is convenient to con-
sider the probability of complements;

E (M) =
∑∞

i=1
(1− P (M

< i))

To solve this equation, we require the following recur-
sive equation;

P (M < i) = 0 for i < l

P (M < i) =
∑i−l−1

j=0
P (M

≥ (j − 1)) p
j
(
1 − p

j+1
)(

1 − p
j+2
)
. . .
(
1 − p

j+l
)

for i≥l
Therefore, for obtaining the most suitable estimation

for the parameter a, we need to find the root of the follow-
ing equation numerically;∑∞

i =1

(
1 −

∑i−l−1

j=0
P (M ≥ (j − 1)) p̂j

(
1 − p̂j+1

)(
1

− p̂j+2
)
. . .
(
1 − p̂j+l

))
− m̂ = 0

4. Discussion

The novel time series model in the present paper can
represent epidemic behaviors, including social and infec-
tious spreading. This model is based on some presump-
tions. Therefore, it does not work well when the decreasing
trend of the rate of growth is absent because it is the main
presumption of the model. Also, since the information on
the initial days is of utmost importance for this model, one
of the challenges in this model is its modification to get
qualified to model datasets that lack information on the
first days. For example, in connection with COVID-19, if we
model the spreading of the disease after March 1, informa-
tion on the first days is absent. To overcome this challenge,
we were forced to gather data before the WHO reports. The
rationale behind this is that spreading exponentially in the
first days is one of the assumptions of our model, too.

The model is not suitable to represent the propagation
of epidemics in which after some severe limitations (quar-
antine, staying home, social distancing, etc.), the condition
of the population comes back to the previous status. To
model this sort of epidemics, we need to update the model
by changing the steps of the model.

It is noticeable that the model is dynamic, and simi-
lar to other time series models, the estimations need to
be updated because our data are limited. Generally, if we
have more information, we can obtain booster models and
more accurate estimations. In addition, the implementa-
tion of strict prevention and control measures, the intense
spread of the disease, or the emergence of new epicenters
of spread such as in South Korea and Iran necessitate new
estimations for each model, particularly ours. It is worth
saying that to overcome this challenge, we applied a mech-
anism to return the process to the previous step when a
new epicenter of spread is found.

Finally, we suggest that the function of this model be
evaluated by comparing it with other families of time se-
ries and artificial intelligence methods.

4.1. Conclusions

We can promote the accuracy of modeling the disease
by considering it locally or by country. It is trivial that at
present, the stage of the outbreak in Iran is quite different
from its stage in other countries such as China and South
Korea. In modeling infections worldwide, it is very helpful

Now, we can estimate the parameter a by using

â = −log (p̂)

The last step is to compare our candidates through fit-
ting the dataset (xt). Our candidates are six pairs of (l̂ and 
â). Our criterion in this item is the minimum square of 
residuals.

Applying the mentioned procedure leads to having 
models with parameters (0.75, 1.35, 3, 1), (0.6, 1.23, 2, 2), and 
(3.2, 1.44, 3, 13) for modeling the sequence of Facebook users 
from 2014 to 2019, the time series of confirmed cases of 
SARS in China from March 17 to June 17, and the course of 
COVID-19 from January 13 to March 5, respectively (Figures 
3A-C and Figures 4A-C). In Figure 4, we present the aver-
age, 90% upper bound, and 90% lower bound of the pre-
dictions made by these models in the periods from 2018 to 
2019 (eight units), May 18 to June 17 (30 units), and February 
25 to March 5 (10 units).

Health Scope. 2020; 9(3):e102837. 9
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to apply a mechanism to decrease the steps of the process
by one level when a new epicenter of spread is found.
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