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Abstract

Background: Early and appropriate antidotal therapy is crucial for patients with organophosphate poisoning.

Objectives: Given the lack of a comprehensive consensus on the optimal dose of pralidoxime for patients with

organophosphate poisoning, this study aims to develop a machine learning-based prediction model to determine the

individualized pralidoxime dose for these patients.

Methods: The dataset was divided into training and test sets with a 70:30 ratio. Feature selection was conducted using Pearson’s

correlation coefficient (filter approach) method. Both classification and regression were employed to develop the prediction

model using the selected features. The performance of the developed models was evaluated using ten-fold cross-validation and

various metrics, including sensitivity, specificity, accuracy, F1-score, and AUC. The models were implemented and assessed using

the scikit-learn library in Python.

Results: After applying exclusion criteria, data from 325 patients were utilized to train and test the machine-learning models. In

the classification approach, the random forest method achieved superior performance with an AUC of 98.6. In the regression

approach, the gradient boosting regressor, with an R2 value of 65.4, outperformed other algorithms. Feature selection revealed

that muscular weakness, plasma cholinesterase activity, and blood urea nitrogen were the most significant predictors of

pralidoxime dose in the classification model. In the regression model, the top predictors were age, HCO3-VBG, and atropine

bolus. Many of the selected features coincide with those identified in previous studies, with muscular weakness being

particularly significant in both models.

Conclusions: The most effective algorithms could be employed to develop a clinical decision support system for personalized

pralidoxime dosage prediction in patients with organophosphorus poisoning. However, the study is constrained by its small

sample size, retrospective design, and the absence of an external validation cohort. Conducting a prospective multicenter study

with a larger sample size is crucial to validate the findings of this study.
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1. Background

Organophosphate (OP) poisoning is a major global
health issue caused by exposure to OP compounds,

which are widely used as pesticides. Organophosphates

are among the most common causes of accidental,
occupational, and suicidal intoxications due to their

widespread use, easy accessibility, and simplicity in

synthesis (1). Despite the role of pesticides in enhancing
agricultural productivity, concerns are increasing about

their adverse effects on human health (2).
Organophosphate poisoning is more prevalent in

developing countries where highly hazardous pesticides
(HHPs) are more readily available. Significant incidences

of intentional or unintentional OP poisoning occur in

the agricultural regions of developing countries in
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South Asia and Southeast Asia, including China, India,

Sri Lanka, Iran, and the Maldives (2, 3). Annually, the

global death toll from OP poisoning is estimated to
range from 250 000 to 350 000 (4). In rural areas,

poisoning with organophosphorus compounds
typically occurs deliberately with suicidal intent (5). One

study reported that 51.7% of OP poisonings were

deliberate, while 21.7% were accidental (4). Previous
studies have indicated that intentional self-poisoning is

associated with significantly higher mortality than
unintentional poisoning (6). Given the high prevalence

of intentional poisoning with organophosphorus

compounds, particularly in developing countries, and

the high mortality associated with it, implementing

necessary therapeutic interventions for these patients is
crucial.

Organophosphates inhibit the enzyme

acetylcholinesterase (AChE) by phosphorylating the

serine hydroxyl group on the enzyme.

Acetylcholinesterase is responsible for hydrolyzing the

neurotransmitter acetylcholine (ACh) at cholinergic

synapses. Therefore, AChE inhibition leads to the

accumulation of ACh at the cholinergic synapse,

resulting in prolonged stimulation of nicotinic and

muscarinic ACh receptors, which manifests as OP

toxidrome (1, 7). In addition to supportive care, the

standard treatment includes three main therapeutic

approaches: Atropine to block muscarinic receptors,

oxime-type reactivators (e.g., pralidoxime, obidoxime)

to dephosphorylate the inhibited AChE and

benzodiazepines for seizure management.

In Iran, pralidoxime chloride (2-PAM) is the oxime of

choice and is commonly used as an antidote for OP

poisoning. It works by reactivating AChE, thus reducing

the accumulation of ACh (8). For adults, the initial

recommended dose of pralidoxime chloride typically

ranges from 1 to 2 grams, followed by a continuous

infusion at a rate of 250 to 500 mg per hour. However,

dosing guidelines can vary based on the specific product

used and the severity of the poisoning. Close

monitoring of the patient's clinical response is crucial to

determine the need for additional doses or adjustments

in the infusion rate. In pediatric patients, the dose of

pralidoxime is generally calculated based on body

weight, with an initial dose typically ranging from 20 to

50 mg/kg, followed by a continuous infusion at a rate of

5 to 10 mg/kg per hour (9-11).

There is a divergence of opinion regarding the

effectiveness of pralidoxime in treating OP poisoning;
some studies have reported that its administration leads

to a decrease in mortality among patients poisoned

with organophosphorus agents (12-15), while others

indicate no effect (16, 17). Several previous studies

examining the effectiveness of various dosages of

pralidoxime are outlined in Table 1 (11, 14, 16, 18-25). The
appropriate dose of pralidoxime for a specific individual

depends on several factors, including the severity of
poisoning, age, weight, and individual response (26).

Additionally, some studies recommend high-dose

pralidoxime (12), while others have reported that high
doses may be associated with a higher mortality rate

and recommend low-dose pralidoxime (27). With the
expansion of information technology in many research

fields, including healthcare, real-world studies such as

non-interventional and observational studies have

become significant data sources for clinical research

(28). Compared to traditional models, machine learning
approaches offer immense benefits in handling real-

world evidence. Unlike traditional models, which
cannot handle complex, interacting, high-dimensional

variables, machine learning models are more accurate

and provide greater generalizations (29). The use of
machine learning techniques based on real-world

research has become popular recently, with examples
including models for predicting tacrolimus blood

concentration in patients with autoimmune diseases,

the prediction of vancomycin dose through XGBoost,
and the prediction of warfarin maintenance dose

through LightGBM (30-32).

2. Objectives

In this study, we aimed to predict an optimal

pralidoxime therapeutic dose based on real-world

evidence, including initial symptoms, clinical

presentation, vital signs, and laboratory parameters at

presentation, using machine learning methods to

enhance its efficacy in patients poisoned by OPs.

3. Methods

3.1. Study Population

The roadmap of the proposed system for predicting
pralidoxime dose in patients with OP poisoning is

illustrated in Figure 1. This retrospective study was
conducted at Loghman Hakim Hospital, Tehran, Iran's

primary referral center for poisoned patients, from

March 2016 to April 2021. The study included patients
aged 14 years and older who had been poisoned with

OPs and met specific criteria. These criteria included
documented OP exposure and a plasma cholinesterase

(PChE) activity of less than 4300 U/L upon admission,

indicative of acute OP poisoning (33). A total of 325
patients were included, particularly those who received
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commonly recommended pralidoxime dose regimens.

These regimens typically involved an initial intravenous

infusion of 1 - 2 g (10 - 20 mg/mL) over 15 - 30 minutes,

followed by a continuous infusion of 500 mg/h until 24

hours after the patient was weaned from atropine. The
study aimed to predict the outcome of dried pulmonary

secretions and adequate oxygenation following

pralidoxime administration. Exclusion criteria included

non-receipt of pralidoxime, multidrug toxicity, and the

presence of severe chronic comorbidities. Ethical
approval for the study was obtained from the ethics

committee (IR.SBMU.RETECH.REC.1401.257), and

informed consent was obtained from all participants.

Figure 1. Graphical abstract: The roadmap of the proposed system to predict
pralidoxime dose in patients with organophosphate poisoning

3.2. Collection and Processing of Data

Data for this study were obtained from electronic

medical records. Two researchers reviewed the medical

records of the patients, and a questionnaire was used to

extract clinical information from the electronic

databases of Loghman Hakim Hospital. The

questionnaire covered various patient demographics,

medical history, symptoms, and laboratory test results,

as well as hospital-related factors such as the need for

intubation and duration of hospitalization. The dataset

underwent several preparation processes, including the

removal of rows with missing values greater than 70%,

application of min-max scalar and standard scalar, data

validation, under-sampling, and splitting of the dataset.

3.3. Feature Selection

Feature selection in machine learning involves

identifying the most relevant attributes or parameters
to improve model performance. In this research, the

filter approach using Pearson’s correlation coefficient

was employed to select features by assessing the
correlation between each variable and the predictive

outcome. The aim was to identify the key predictors of
the total pralidoxime dose necessary for maintaining

sufficient oxygenation. Only variables demonstrating a

strong correlation with the predictive outcome, such as
dried pulmonary secretions and adequate oxygenation,

were retained through the feature selection process.
Variables with zero correlation coefficients were

excluded from the feature subset, while those with high

coefficients were included in the selected variables
subset.

3.4 Statistical Analysis

Based on the outcomes of the Kolmogorov-Smirnov

and Shapiro-Wilk tests, it was determined that all

continuous variables exhibited non-normal

distributions. Consequently, these variables were

represented by their median values and interquartile

ranges and were analyzed using the Kruskal-Wallis and

Mann-Whitney U tests. Categorical variables were

depicted in terms of absolute frequencies (n) and were

analyzed using the chi-square test.

3.5. Model Development and Performance Evaluation

The prediction model for pralidoxime dose in

patients poisoned by OPs was assessed using two

methods: (1) regression, with pralidoxime dose

considered as a continuous variable; and (2)

classification, with pralidoxime dose divided into two

classes, low dose, and high dose. In the low dose class,

patients received total doses of less than 14 000 g, and in

the high dose class, patients received total doses of 14

000 g or more. For the first method, 25 machine

learning models were used, and for the second method,

15 machine learning models were trained. Models with

the best performance are listed in Table 2 (the top ten

models for the regression method) and Table 3 (the top

14 models for the classification method). A ten-fold

cross-validation technique was employed to train and

test the machine learning algorithms using both

complete and selected feature datasets. This method

involves dividing the dataset into ten sections and
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performing the holdout method ten times. The final

dataset was randomly split into training (70%) and

testing (30%) sets. Model creation, hyper-parameter

tuning, and model performance evaluation were

conducted using these datasets. This approach prevents

random data bias and ensures an equal distribution of

data between the training and test sets. It is important

to note that the testing dataset was not used during the

training process. Hyperparameters were tuned using

the training dataset through the cross-validation

method. Python software was used to develop a model

utilizing classification models. The performance of the

classification algorithms was assessed by testing them

on the testing dataset after training. Five commonly

used efficiency testing metrics, including sensitivity,

specificity, accuracy, F1-score, and AUC, were utilized to

evaluate the effectiveness of classification algorithms in

predicting the pralidoxime dose in OP-poisoned

patients. These performance measures were then used

to compare the performance of each trained classifier

with that of other machine-learning systems. The

efficiency evaluation metrics for the classifiers are as

follows:

Four performance measures were employed in the

regression method to evaluate the performance of each

algorithm: Mean absolute error (MAE), mean squared

error (MSE), root mean squared error (RMSE), and R-

squared (R2). The calculations for these metrics are as

follows:

In the process of regression analysis, we employed

the standardization technique to scale the variables.

Standardization involves centering the values around

the mean and adjusting them to have a unit standard

deviation. This is achieved by dividing the variable by its

standard deviation after subtracting the mean, as

indicated by the following equation:

4. Results

4.1. Patients

After a comprehensive review of electronic medical

records, a total of 5,380 patients diagnosed with OP

poisoning were identified within the database, forming

the primary cohort. Among them, 983 patients had

incomplete medical records, and 4,072 patients were

excluded based on predetermined exclusion criteria.

Specifically, 383 patients had a normal range of PChE,

1,057 patients had multidrug toxicity, 937 patients had

chronic comorbidity, 529 patients were admitted more

than 24 hours after poisoning, 549 patients were below

14 years of age, and 617 patients did not receive

pralidoxime. Ultimately, 325 patients were enrolled in

the study. Figure 2 depicts the patient selection process.

The descriptive characteristics of the study sample are

presented in Table 4.

Figure 2. Patient selection flowchart
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Table 2. Results of Ten-Fold Cross-Validation for Regressors Performance on Selected Predictors After Feature Scaling in Regression Method

Index Model MAE MSE RMSE R2 RMSLE MAPE

Gbr Gradient boosting regressor 9208.1856 265695067.5245 15210.5268 0.6540 0.7210 0.8991

light gum Light gradient boosting machine 11082.3208 411516903.5829 18637.1318 0.5818 0.8653 1.2540

Et Extra trees regressor 9964.7046 390583726.4613 17809.5835 0.4884 0.7287 0.9194

Ada AdaBoost regressor 14937.2844 428589688.6916 19027.8917 0.4837 1.1143 2.2290

xgboost Extreme gradient boosting 9210.9117 342642130.7921 17211.7812 0.4199 0.7087 0.9305

Rf Random forest regressor 11670.8163 433264351.1262 19619.4416 0.4145 0.7812 1.0514

Huber Huber regressor 16389.3648 1018552916.3411 27720.5679 0.1742 1.1506 1.2774

Par Passive aggressive regressor 16079.8772 1110867086.3911 29187.1724 0.0923 1.1319 1.0646

En Elastic net 19619.8389 1026946561.5622 29350.4610 0.0035 1.2072 2.2364

Dt Decision tree regressor 10381.8142 832112670.2866 24221.9796 0.0017 0.8261 0.7595

Table 3. Results of Ten-Fold Cross-Validation for Classifiers Performance on Selected Predictors in Classification Method

Index Model Accuracy AUC Recall Precision F1 Kappa

rf Random forest classifier 0.9152 0.9865 0.9061 0.9308 0.9169 0.8307

light gum Light gradient boosting machine 0.9073 0.9756 0.9159 0.9129 0.9107 0.8145

gbc Gradient boosting classifier 0.9071 0.9584 0.9318 0.896 0.9125 0.8136

ada Ada boost classifier 0.8897 0.9218 0.897 0.8968 0.8945 0.7786

et Extra trees classifier 0.8798 0.9619 0.872 0.9013 0.883 0.7599

xgboost Extreme gradient boosting 0.8763 0.9548 0.8826 0.881 0.879 0.7528

lda Linear discriminant analysis 0.8275 0.8515 0.8379 0.8314 0.8328 0.6544

ridge Ridge classifier 0.7966 0.0 0.8212 0.7942 0.8044 0.5924

dt Decision tree classifier 0.7832 0.7839 0.7879 0.7967 0.7829 0.5672

lr Logistic regression 0.748 0.8254 0.7871 0.751 0.7651 0.4947

qda Quadratic discriminant analysis 0.7069 0.8036 0.6477 0.826 0.6635 0.4168

knn K neighbors classifier 0.6947 0.7909 0.7015 0.7225 0.7043 0.3898

nb Naive bayes 0.6856 0.7843 0.7682 0.6856 0.7195 0.363

Svm SVM - linear kernel 0.5796 0.0 0.5705 0.6766 0.5375 0.1577

4.2. Feature Selection

Significant and relevant features for predicting the

pralidoxime dose in OP-poisoned patients were selected

using Pearson’s correlation coefficient (filter approach).

Figure 3 shows the top ten variables selected for the

classification method, where muscular weakness, PChE

activity, and blood urea nitrogen (BUN) scored the

highest for predicting pralidoxime dose. In the

regression method, after scaling the variables using the

standardization technique, the top ten features in
predicting the dose of pralidoxime from most to least

important were age, HCO3-VBG, bolus of atropine,

aspartate aminotransferase (AST), pulmonary rale, PH-

VBG, PChE activity, muscular weakness, BUN, and alanine
transaminase (ALT) (Figure 4).

Figure 3. Variables are selected by feature selection in the classification method.
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Figure 4. Variables are selected by feature selection using the regression method.

4.3. Performance of Prediction Models

Performance metrics were calculated to compare the

effectiveness of prediction models in classification and

regression methods. Table 2 presents the results of the

top ten prediction algorithms for the regression

method using selected standard features to predict the

pralidoxime dose in patients with OP poisoning. The

gradient-boosting regressor emerged as the most

accurate and responsive model, exhibiting the highest

R2 value. This prediction model had an MAE of 9208.19,

an MSE of 265695067.52, an RMSE of 15210.52, and an R2

of 65.4. Figure 5 depicts the learning curves of the

regression method before (A) and after (B) feature

scaling, demonstrating improved convergence of

training and cross-validation scores after scaling. Table 3

summarizes the results of the top 14 prediction

algorithms for the classification method using selected

features to predict the pralidoxime dose in OP-poisoned

patients. Based on ten-fold cross-validation findings, the

random forest classifier showed the highest accuracy

and sensitivity, as well as the highest AUC value among

the classifiers tested. This model achieved a mean

accuracy of 91.5%, a recall or sensitivity of 90.6%, a

precision of 93.1%, an F1-score of 91.7%, Kappa statistics of

83.1%, and an AUC of 98.6. Figure 6 presents the

confusion matrix (A) and learning curve (B) for this

model, indicating a good fit as the training and cross-

validation curves converge at a high score.

Figure 5. The learning curve of the regression method before (A) and after (B)
feature scaling

Figure 6. The confusion matrix (A) and learning curve (B) for the classification
method

5. Discussion

Immediate antidotal treatment in patients with

severe OP poisoning is crucial. The first line of antidotal

therapy for OP poisoning includes atropine and

pralidoxime (34). In antidote therapy, prescribing the

correct dose of the antidote is vital, although the

appropriate dose of pralidoxime in patients with OP

poisoning remains controversial, with various dosage

schedules being employed (20, 35). Several studies have

investigated the ideal dose of pralidoxime in OP-

poisoned patients, but the results have been

inconclusive. For instance, one study reported that a

pralidoxime dose of 20.0 ± 12.7 g was more effective than

a dose of 7.2 ± 4.1 g, leading to a reduction in the

duration of hospitalization and mortality rate (19).

Another study found that a pralidoxime dose of 2 g

followed by an 8 mg/kg/h infusion was more effective

than a dose of 2 g followed by 1 g every 6 hours (20). We

hypothesize that an individualized pralidoxime dose,

determined based on clinical presentations and

laboratory parameters, might be helpful in these cases.

Machine learning techniques enable healthcare

providers and researchers to leverage large amounts of

patient data to make precise and individualized dose

predictions. By tailoring treatment plans to the unique

characteristics of each patient, machine learning can
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contribute to improved treatment outcomes, reduced

adverse effects, and enhanced patient safety. Machine

learning algorithms can analyze complex patterns and

relationships within patient data to make accurate dose

predictions (36). For instance, in one study, researchers

used machine learning methods to develop a predictive

model for determining the appropriate dosage of

lapatinib in patients with metastatic HER2(+) breast

cancer, utilizing real-world data and applying both

machine learning and deep learning techniques (29).

Another study reported an optimal dosing algorithm for

vancomycin in patients with MRSA and other gram-

positive bacterial infections, developed using machine-

learning methods (31). Asiimwe et al. assessed the

performance of 21 machine-learning algorithms in

predicting stable warfarin doses in sub-Saharan Black-

African patients (37).

In this study, we applied a machine learning

technique for the first time to predict pralidoxime doses

in patients poisoned by OPs based on demographic

profiles, clinical symptoms, and laboratory parameters.

We employed two different methods for this purpose.

The first method, classification, grouped patients into

two categories based on the pralidoxime dose: Either

low dose (< 14000 g) or high dose (≥ 14000 g). In the

second method, after feature scaling using the

standardization technique, the pralidoxime dose was

included in the machine-learning model as a

continuous variable. A total of 35 features were selected

for both the classification and regression methods. The

following features were among the top ten in both

methods: Age, muscular weakness, ALT, AST, BUN, and

initial PChE level. Apart from these shared features, in

the classification method, the last measured level of

PChE (last measurement within the first 24 hours of

hospitalization), ALP, PCO2-VBG, and the amount of

consumed toxin was among the top ten predictors of

pralidoxime. In the regression method, additional top

predictors included HCO3-VBG, received a bolus of

atropine, pulmonary rale, and PH-VBG.

Many of the features selected in this study overlap

with those identified in our previous study, which

examined predictors of OP poisoning severity (38). The

AChE enzyme prevents the buildup of the

neurotransmitter ACh at various muscarinic and

nicotinic sites in the body by hydrolyzing it. This

enzyme has both a serine site and an anionic site. The OP

molecule attacks the serine site located within the active

site of the enzyme. As a result, through an irreversible

interaction, the serine site is phosphorylated, and a

strong covalent bond is formed, leading to the

inactivation of the enzyme's active site. Pralidoxime

functions as a reactivator of AChE by attaching to the

enzyme's anionic site, close to the previously attached

OP molecule at the serine site. The pralidoxime

molecule sacrifices itself by becoming phosphorylated

instead of the enzyme since it has a higher affinity for

phosphorylation by OP agents than the enzyme's serine

site. Consequently, the OP molecule detaches from the

enzyme and forms an OP-pralidoxime complex, which is

then hydrolyzed. This process results in enzyme

reactivation (39). The main effect of pralidoxime is the

restoration of ACh esterase at nicotinic sites in the body,

alleviating symptoms such as muscle weakness,

fasciculations, and paralysis (40). According to our

results, muscular weakness was one of the most

significant features in predicting the dose of

pralidoxime, selected in both the classification and

regression methods. Other predictors of pralidoxime

dosage are also features directly related to the severity

of organophosphorus poisoning and can be used to

predict the dosage of pralidoxime in these patients.

In the classification method among different

machine learning algorithms, the random forest

classifier demonstrated the strongest performance, with

an AUC value of 98.6%. In the regression method, the

gradient-boosting regressor showed the strongest

performance, with an R2 value of 0.65. Both the random

forest classifier and the gradient boosting regressor are

decision-tree-based machine learning algorithms.

Algorithms utilizing decision trees demonstrate high

efficacy in predictive modeling, especially for small-to-

medium structured datasets with substantial missing

data (38).

The novelty of this study lies in the utilization of

machine learning methodology to forecast the optimal

dosage of pralidoxime for individuals affected by OP

poisoning. This investigation marks the inaugural

development of a machine learning-based predictive

model for pralidoxime dosage, employing two distinct

approaches: Classification and regression. The strength

of the study lies in the use of machine learning

methods, which offer numerous advantages such as

enhanced accuracy, efficiency, and decision-making

capabilities. Nevertheless, the study is subject to several

limitations, notably the small sample size and the

retrospective nature of the data, which led to a

considerable amount of missing data in the dataset.

Additionally, the absence of an external validation

cohort and the recruitment of patients solely from a

single hospital further constrain the study. Thus, to

obtain confirmatory results, a more robust multicenter

study with a larger sample size is imperative.
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5.1. Conclusions

Machine learning-based prediction algorithms can

be utilized to anticipate the appropriate dosage of

pralidoxime for patients suffering from

organophosphorus (OP) poisoning. Through the

application of feature selection techniques, age, HCO3-

VBG, received bolus of atropine, and AST were identified

as the most significant predictors of pralidoxime dosage

in the regression method. The gradient-boosting

regressor emerged as the most effective algorithm with

the highest predictive performance. In the classification

method, muscular weakness, the last measured level of

PChE, BUN, ALP, and AST were determined to be the most

crucial predictors of pralidoxime dosage, with the

random forest classifier demonstrating the best

predictive performance. These algorithms have the

potential to contribute to the development of a clinical

decision support system for the precise individualized

dosing of pralidoxime in OP poisoning cases.

Nevertheless, further research with a larger sample size

is imperative to substantiate these findings.
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Table 1. Characteristics of Previous Studies Investigating the Effectiveness of Pralidoxime in Patients with Organophosphates Poisoning a

Authors Study Country,
Year

Number of Patients Sex Age (y) Pralidoxime
Dosage

Outcome

Pawar et al.
(14) RCT India, 2006

200, poisoning by
anticholinesterase pesticide

Male; control group: 52;
study group: 57

Control group: 29 (22 - 35);
Study group: 28 (22 - 33)

Control
group: 2 g
loading dose
over 30 min,
then a bolus
dose of 1 g/4 h
for 48 h; study
group: 2 g
loading dose
over 30 min,
then a
constant
infusion of 1
g/h for 48 h.

Patients in the
study group
required less
atropine, a
short duration
of ventilatory
support, and
less frequency
of intubation.

Syed et al.
(16)

RCT India, 2015 100 patients with OP
poisoning

Sex ratio (male:female);
control group: 1:1.56; study
group: 1:1.62

Control group: 28.2 ± 9.9;
study group: 29.1 ± 10.9

Control
group:
Received I.V
saline; study
group: (30
mg/kg loading
dose over 30
min followed
by 8 mg/kg/h
continuous
infusion for a
maximum of 7
days

There was no
statistically
significant
difference
between the
two groups in
terms of
mortality,
hemodynamic
parameters,
atropine
requirements,
duration of
ventilation,
and ICU stay

Eddleston et
al. (11)

RCT
Sri Lanka,

2009
235 patients with OP
poisoning

Male; control group: 92
(80.7); study group: 96
(79.3)

Control group: 29.5 (23 -
42); study group: 31 (22 -
48)

Control
group:
Normal saline
infusion;
study group: 2
g loading dose
over 20 min,
then a
constant
infusion of 0.5
g/h until 7
days

Mortality was
non-
significantly
higher in
patients
receiving
pralidoxime,
and the need
for intubation
was similar in
both groups

Thunga and
Pandey (18)

Cross-sectional,
nonrandomized

observational
study

India, 2013 256 OPs poisoned patients
Sex ratio (male: female):
2.3:1

Majority of patients were
in the age group of 21 - 30
years

Control
group:
Normal saline
infusion;
study groups:
Intermittent (1
g/q8h),
continuous
infusion (500
mg/h),
continuous
infusion (1
g/h)

The incidence
of
intermediate
syndrome,
number of
ventilation
days, total
atropine
requirement,
number of
hospitalization
days, and
mortality rate
significantly
reduced in
continuous
infusion of
pralidoxime at
500 mg/hour

Due (19)
Comparative

study
Vietnam,

2014
Control group: 54; study
group: 108

Male; control group: 30
(55.6); study group: 64
(59.3)

Control group: 25.5 ± 10;
study group: 29.5 ± 14.2

Control
group:
Received a
mean total
dose of 7.2 ±
4.1 g; study
group:
Received a
mean total
dose of 20.0 ±
12.7 g

In the study
group,
patients
received
significantly
lower doses of
atropine and
required a
shorter
duration of
hospital stay,
and the
mortality rate
was lower than
the control
group

Mahesh et al.
(20)

Randomized
open-labeled
prospective

study

India, 2013 Control group: 45; study
group: 37

Male:female, control group:
35:10; study group: 21:16

Control group: 30.1 ± 7.3;
study group: 31.3 ± 8.9

Control
group: 2 g
bolus followed
by 1g/6 h;
study group: 2
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Authors Study
Country,

Year Number of Patients Sex Age (y)
Pralidoxime
Dosage Outcome

mg/kg/h
infusion

Duration of
mechanical
ventilation,
mean dosage of
atropine
administered,
and incidence
of intermediate
syndrome were
significantly
lower in the
study group
than in the
control group

Chaudhary
et al. (21)

Case-control
study

India, 2013 Control group: 35; study
group: 35

Male:female, control group:
25:10; study group: 24:11

Control group: 24.80 ± 8.3;
study group: 25.17 ± 9.2

Control group:
-; study group:
30 mg/kg body
weight in 200
mL of normal
saline over 30
min followed
by 2.0 g in 200
mL of normal
saline over 30
min, at 6 h
intervals for
initial 72 h

There was no
statistically
significant
disparity
observed
between the
two groups in
relation to the
total amount of
atropine
administered,
necessity for
intubation,
average length
of
hospitalization,
and mortality
rate.

Cherian et al.
(22) RCT India, 2005

Control group: 11; study
group: 10 NA NA

Control group:
Normal saline
infusion;
Study group:
PAM infusion
of 12 g/day for
3 days in
severe cases
and 4 g/day for
3 days in
moderate
cases

There was no
difference
between the
treatment and
placebo groups
in relation to
the necessity
for intubation,
average length
of
hospitalization,
and mortality
rate.

Cherian et al.
(23)

RCT India, 1997 Control group: 55; Study
group: 55

Male, control group: 34 (62);
study group: 41 (75)

Control group: 26.5 ± 10.3;
study group: 28 ± 10.1

Control group:
Normal saline
infusion for 3
days; study
group:
Infusion of 12
g over 3 days

The
requirement of
ventilator
support (37 vs.
22), the
incidence of an
intermediate
syndrome (36
vs. 19), and the
mortality rate
(16 vs. 3) were
higher in the
study group
than in the
control group

Banerjee et
al. (24)

Open-label,
parallel-group
clinical study

India, 2011
Control group: 30; study
group: 30

Male, control group: 11 (37);
study group: 14 (47)

Control group: 34.3 ± 8.8;
study group: 34.6 ± 9.8

Control group:
-; study group:
a dose of 0.5 - 1
g/6 h

The mortality
rate,
requirement of
ventilator, and
duration of
hospital stay in
the two groups
failed to show
any statistically
significant
difference.

Banerjee et
al. (25)

Open-label,
parallel-
group,

randomized
clinical trial

India, 2014 Control group: 60; study
group: 60

Male, control group: 26 (43);
study group: 23 (38)

Control group: 34.3 ± 8.8;
study group: 34.6 ± 9.8

Control group:
-; study group:
A dose of 1 g
every 6 hours
for a period of
5 days

Pralidoxime
therapy did not
offer any
appreciable
benefit over
atropine alone
in terms of
reducing
mortality and
ventilator
requirement.
Patients in the
study group
experienced
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Authors Study Country, Year Number of Patients Sex Age (y)
Pralidoxime
Dosage Outcome

longer
duration
of
hospital
stay

a Values are expressed as No. (%), mean ± SD or median (IQR) unless otherwise indicated.
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Table 4. The Study Sample's Descriptive Characteristics a

Variables
Pralidoxime Dose

Total (n = 325) P-Value
Low Dose (n = 172) High Dose (n = 153)

Sex 0.06

Male 96 69 165

Female 76 84 160

Age 33 (25) 31 (22) - 0.092

Time to hospitalization 4 (10) 4 (7) - 0.332

Sialorrhea 0.000

No 160 135 295

Yes 12 18 30

Bradycardia 0.370

No 169 152 321

Yes 3 1 4

Rales 0.000

No 153 111 264

Yes 171 153 324

Bronchospasm 0.467

No 116 97 213

Yes 56 56 112

Intubation 0.763

No 121 105 226

Yes 51 48 99

Incontinence 0.138

No 166 142 308

Yes 6 11 17

Fasciculation 0.000

No 160 122 282

Yes 12 31 43

Muscular weakness 0.000

No 141 47 188

Yes 31 106 137

Paralysis 0.000

No 172 140 312

Yes 0 13 13

Tachycardia 0.738

No 88 75 163

Yes 84 78 162

Confusion 0.270

No 98 96 194

Yes 74 57 131

Lethargy 0.180

No 170 153 323

Yes 2 0 2

Coma 0.380

No 127 106 233

Yes 45 47 92

Agitation 0.017

No 172 148 320

Yes 0 5 5

Seizures 0.621

No 167 147 314
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Variables
Pralidoxime Dose

Total (n = 325) P-Value
Low Dose (n = 172) High Dose (n = 153)

Yes 5 6 11

ICU admission 0.284

No 95 75 170

Yes 77 78 155

The amount of toxin consumed 90 (120) 150 (150) 100 0.00

GCS 15 (7) 15 (7) 12.5 0.589

Cholinesterase level first 305 (971) 317 (1114) 316.5 0.787

Cholinesterase level last 458 (835) 715 (1898) 583.50 0.172

PH-VBG 7.35 (0.11) 7.34 (0.13) 7.345 0.291

PCO2-VBG 38.4 (14.4) 41.5 (11.7) 40.3 0.001

HCO3-VBG 19.6 (4.7) 20.4 (5.2) 20.4 0.346

Cr 1.2 (0.3) 1.2 (0.3) 1.2 0.005

BUN 28 (18.5) 33 (15) 31 0.002

AST 26 (16.3) 25 (12) 25 0.595

ALT 19 (13) 17 (9) 18 0.017

ALP 204 (79) 178 (79) 192 0.002

Bulos of atropine 0.5 (1) 1 (1) 0.5 0.593

a Values are expressed as No. or median (IQR).


