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Abstract

Background: The rapid advancement of robotics and artificial intelligence is poised to revolutionize industrial settings

through widespread automation. This study investigates the impact of robotic assistance on human operator mental workload

(MWL) within a simulated industrial environment. Utilizing electroencephalography (EEG) to measure changes in alpha and

theta band power, we aim to identify the cognitive challenges associated with human-robot collaboration (HRC) and inform the

design of safer and more efficient collaborative systems.

Objectives: The main objective of the current study was to assess the MWL in a simulated industrial human-robot interaction

(HRI) task.

Methods: The EEG data were collected from 17 participants (aged 25 - 35 years) using a 64-channel system while they engaged

in an ecologically valid robotic task that induced three distinct levels of cognitive load: Low, medium, and high. Subsequent

analysis focused on EEG power within the alpha and theta frequency bands, employing repeated-measures ANOVA to assess the

impact of cognitive load on brain activity.

Results: A repeated-measures ANOVA revealed significant changes in EEG power across different task difficulty levels. The theta

and alpha bands in F3, F4, and Fz, as well as the alpha, beta, and gamma bands in P3, P4, and Pz, emerged as promising indicators

for differentiating between varying levels of cognitive load in human-robot tasks.

Conclusions: Electroencephalography spectral power, particularly within the alpha and theta frequency bands, is a reliable

indicator of human MWL. These frequency bands exhibit dynamic changes in response to fluctuating cognitive demands,

especially in human-robotic interaction tasks.

Keywords: Robotic Task, EEG, Mental Workload, Cognitive Ergonomics

1. Background

Technological advancements and developments in

information communication have transformed the

nature of work at both organizational and industry

levels. A shift has occurred from predominantly physical

labor to work characterized by mental and cognitive

demands (1). In recent years, robots have emerged as

essential components for attaining competitiveness in

manufacturing, particularly when they can collaborate

with humans within a shared workspace and foster a

collaborative partnership. The current scenario

emphasizes a collaborative environment where robots

and humans can work together and interact seamlessly

(2).

Human-robot interaction (HRI), an interdisciplinary

field encompassing robotics, data science, psychology,

and cognitive science, has gained prominence within
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the context of the Fourth Industrial Revolution.

Fostering effective human-machine interaction,

characterized by reliable relationships and seamless

communication, is crucial for navigating this era of

technological advancement and facilitating user skill

acquisition (3). Robots can assist humans by relieving

them of physically demanding tasks, carrying heavy

loads, and conducting repetitive tasks. Most

applications in the industrial domain refer to assembly

processes, where robots are responsible for tasks that

require high precision or cause repetitive strain injuries

when done manually, such as carrying heavy objects (4).

Robot integration often necessitates workforce

adaptation, requiring workers to relearn tasks and

adjust to new workflows. This challenge is exacerbated

by the prevalent nature of repetitive tasks and the

demanding work environments in industrial settings,

characterized by factors such as noise, hazards, dim

lighting, time pressure, supervision, and performance

monitoring (5, 6). Consequently, human factors,

including mental stress induced by prolonged

interaction with robots, must be carefully considered

and integrated into the planning and design of robotic

applications in industrial settings (7).

The term "mental workload (MWL)" describes the

amount of cognitive effort required by a person or user

to complete one or more tasks (8). Different researchers

define MWL as the measure of cognitive resources

expended during task execution within a specified

timeframe, used to forecast individual or system

performance (9, 10). Mental workload is a critical

determinant of task performance (11) and is a key factor

considered in the development and assessment of

complex human-machine interfaces (12). There is broad

consensus among researchers about the multifaceted

nature of mental burden, which includes both

individual effort and attention (13, 14). Mental workload

assessment typically employs a combination of

subjective, performance-based, and physiological

measures (15).

Physiological measures serve as natural indicators of

MWL, as increased cognitive demand necessitates

greater resource allocation (16). A variety of

physiological measures, including electrocardiography

(ECG), eye movement, electroencephalography (EEG),

respiration, and electromyography (EMG), can be

employed to assess MWL. For example, since the brain is

the organ responsible for information processing and

decision-making, MWL that is cognitively demanding

should directly affect brain functions and be associated

with electrical activities (17).

The EEG is a non-invasive technique used to capture

and record the brain's electrical activity in response to

stimuli and behavioral tasks (18). Cognitive theories

posit a profound neural basis for emotions, implicating

specific cortical and subcortical brain regions in the

processing of primary emotional states. These neural

correlates of emotion are differentiated from the brain's

general electrical and metabolic functions (19). To

elucidate the relationship between neural activity and

observed voltage patterns, frequency band analysis is

commonly employed, with alpha (8 - 12.5 Hz), theta (4 - 8

Hz), and beta (12.5 - 30 Hz) bands representing key

spectral features associated with various cognitive and

neural processes (20). Previous studies have indicated

that the frontal and parietal bands are associated with

workload levels (21, 22).

The integration of EEG technology into the assembly

line workforce presents significant challenges. The EEG

power indicates the level of synchronous neuronal

activity. Klimesch's research suggests that EEG power is

not simply a linear indicator of cognitive function but

rather exhibits a more intricate and nonlinear

relationship with cognitive and memory performance

(23). The study found a significant correlation between

MWL and EEG power in the alpha and theta frequency

bands. It is suggested that alpha power is correlated

with changes in MWL due to its association with arousal

levels, idle states, and cortical inhibition (24).

In a study conducted by Diaz-Piedra et al. on army

combat drivers, it was concluded that the theta band is a

well-established indicator of cognitive workload (CWL).

Increases in theta power within the frontal and occipital

regions are directly correlated with task difficulty (25).

Aksu et al. conducted a study involving 15 participants

where they employed EEG and eye tracking for assessing

MWL. They concluded that as task difficulty increased,

alpha power exhibited a differential pattern: It rose in

the frontal regions while decreasing in the temporal,

parietal, and occipital regions (26).

Industrial tasks often involve dynamic and

unpredictable elements. Research is needed to explore

how MWL changes in response to these dynamic

conditions, particularly in high ecological validity task

designs. While industrial ergonomics research has

extensively examined MWL in human-computer

interaction scenarios, it has largely overlooked tasks

that require simultaneous motor and cognitive

https://brieflands.com/articles/healthscope-158096


Fazli B et al. Brieflands

Health Scope. 2025; 14(1): e158096 3

demands. Particularly within the domain of HRI, studies

that combine movement and cognition assessments are

conspicuously absent.

2. Objectives

As different professions experience various types of

human error resulting from mental fatigue and the

development of robotic systems, the importance of

human interaction and collaboration with these

systems is critical. Quantifying MWL for workplace

fatigue planning and management can potentially

reduce the impact of human error. Therefore, this study

seeks to measure the cognitive load experienced by

human operators within simulated industrial settings.

The research will investigate the impact of integrating a

robotic assistant into the workflow, with a specific focus

on how this technology influences the cognitive

demands placed on the operator.

3. Methods

3.1. Participants

In this study, 17 male participants aged between 25

and 35 years (mean ± SD: 30.82 ± 2.35) were recruited

from Tehran University of Medical Sciences. There was a

required variability in participants’ educational

backgrounds, ranging from postgraduate to PhD as the

highest degree, and in visual-spatial intelligence.

Although the relatively small sample size of seventeen

participants restricts the generalizability of findings,

the in-depth analysis of individual data offers valuable

insights into the studied phenomena and establishes a

solid foundation for future research with larger cohorts.

Participants were carefully screened to exclude

individuals with visual or neurological impairments

and were all right-handed novices to this experimental

paradigm. The present study was approved by the

Ethical Committee of Tehran University of Medical

Sciences (IR.TUMS.SPH.REC.1401.173). Informed consent

was obtained from all individuals.

3.2. Task

The study design includes one independent variable:

The robotic task, which was manipulated by having

participants perform the task at three levels of difficulty

— low workload, medium workload, and high workload.

The defined task involves participants performing a

simulated task using a pre-designed and built robotic

arm controlled remotely through manual controllers, as

shown in Figure 1.

A robotic arm with 5 degrees of freedom and an AVR

microcontroller was utilized to execute the HRI task. The

robotic arm is equipped with a gripper that receives

motion commands from manual controllers (joysticks).

Through these commands, it can manipulate objects of

sizes proportional to the gripper's surface. The

maximum radius of motion for the robotic arm is 60

centimeters.

The simulated task is designed to have high

ecological validity, requiring participants to process

visual and spatial information, mirroring real-world

industrial robot operation. To enhance ecological

validity, the task incorporated both motor and cognitive

components. Three levels of CWL (low, medium, and

high) were established by manipulating task

complexity. The maximum duration for each task block

was set at 10 minutes.

To balance and neutralize the learning effect and

order effect, each participant randomly selected one of

the six predefined sequences or conditions and

performed the robotic task. The conclusion of each

block was determined through a trigger installed in the

robotic framework.

Working memory load was manipulated by requiring

participants to concurrently memorize a series of visual

stimuli, including industry-related images and two-digit

numbers, while performing the robotic task. The

number of stimuli was systematically varied across

three conditions to induce varying levels of cognitive

demand: Low (2 stimuli), medium (5 stimuli), and high

(7 stimuli).

The initial task involved manipulating cubes with

embedded industrial images and numbers. To increase

cognitive load, the task incorporated a Stroop-like

interference effect by mismatching cube colors, written

words, and box colors. Three levels of difficulty were

introduced: Color-matching, color-word matching, and

color-word-color matching. To enhance ecological

validity, industrial sounds were played concurrently

during task execution.

The task conditions for the robotic task in the

medium and high levels were similar to the low level,

with the difference being that the number of industrial

shapes and digit numbers attached to the cubes

increased to 5 and 7, respectively.
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Figure 1. Participant wearing the single electrode electroencephalography (EEG) device conducting an experiment.

Figure 2. Study protocol of robotic task
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Figure 3. Arrangement of the electrodes used in data acquisition as a single electrode

Table 1. Descriptive Statistic of Quantitative Demographics Data

Variables Min - Max Mean ± SD

Age 26 - 35 30.82 ± 2.35

Visual acuity/right eye 8 - 10 9.64 ± 0.78

Visual acuity/left eye 8 - 10 9.82 ± 0.25

A repeated-measures design was employed, with each

participant completing tasks at three cognitive load

levels. Prior to the main experiment, participants

provided informed consent, underwent pre-testing, and

received training on the robotic arm. A baseline resting

state measurement was collected before each

experimental block. Participants engaged in each task

condition for 10 minutes, followed by a debriefing

session. The experimental setup during the robotic

assembly task is depicted in Figure 2.

3.4. Stroop Method

The Stroop color word test is a cognitive assessment

that evaluates an individual's ability to manage

conflicting information. By presenting words printed in

incongruent colors, the test induces interference

between automatic and controlled processing. This

incongruency demands increased cognitive effort from

participants. Imposing a time constraint on responses

further amplifies task difficulty (27).

To increase the cognitive engagement of the

participants, boxes designed for cube placement were

configured according to the Stroop effect paradigm. At

the low level, participants were required to match the

color of the cubes with the color of the box's front face

and perform the necessary movements. At the medium

level, the cubes had to be moved based on the written

color on the box. At the high level, the cube color needed

to correspond to the background color of the text on the

box.

3.5. Data Acquisition and Measurement

The EEG data were acquired at a 500 Hz sampling rate

using a 64-channel dry Ag/AgCl electrode cap (64-

channel EEG system - eego™mylab, ANT Neuro,

Netherlands) conforming to the International 10-20

system. Two additional electrodes were placed on the

https://brieflands.com/articles/healthscope-158096
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Table 2. Descriptive Statistics of Qualitative Demographics Data

Variables No. (%)

Education level

Post graduate 2 (11.8)

Ph.D. 15 (88.2)

Marital status

Married 7 (41.2)

Single 10 (58.8)

Medical history (disease)

Yes 2 (11.8)

No 15 (88.2)

left and right mastoid processes for subsequent offline

re-referencing (Figure 3). Ground and reference

electrode impedances were maintained below 5 kΩ.

Raw EEG data underwent offline preprocessing using

EEGLAB (28). The EEG preprocessing involves a series of

techniques designed to enhance the quality and

interpretability of raw EEG data. This is a critical step

due to the pervasive presence of noise in scalp-recorded

EEG signals, stemming from sources such as movement

artifacts, powerline interference, and ocular activity. By

effectively removing these artifacts, EEG preprocessing

improves the spatial information of neural activity and

prepares the data for subsequent analysis.

In our study, a bandpass filter (0.5 - 80 Hz) was

applied to mitigate noise, including DC drift, powerline

interference, and muscle artifacts. Epoch extraction was

followed by manual rejection of contaminated

segments. Independent component analysis (ICA) was

utilized to decompose the EEG signal into independent

components, with subsequent removal of components

related to eye blinks and other artifacts.

The acquired signals were analyzed in single-channel

(or single-electrode) data. A spatial and frequency

analysis was performed on the EEG data, focusing on the

absolute power considering the frontal and parietal

electrodes (F3, F4, F7, F8, Fz, P3, P4, P7, P8, Pz) as shown in

Figure 3.

Participants were recruited using a convenience

sampling method. Following a pre-screening process,

individuals who met the inclusion criteria were

included in the final study phase. Repeated measures

ANOVA models were employed, treating load condition

as a within-subjects factor. For degrees of freedom

where Mauchly's test revealed a breach of the

assumption of sphericity, Greenhouse-Geisser

estimations were used. Partial eta squared was used to

report effect sizes. Holm-adjusted and P-values (< 0.05)

were used for pairwise comparisons between load

conditions.

4. Results

All participants were male. The mean age of the

participants was 30.82 years (SD = 2.35), with an age

range of 25 to 35 years. Tables 1 and 2 provide a summary

of the qualitative and quantitative demographic

characteristics of the participants.

For each brain rhythm analyzed, a two-way repeated-

measures ANOVA was conducted with 24 electrodes and

three levels of task load as within-subject factors. Given

the established association between frontal electrodes

and theta band activity, and parietal electrodes and

alpha band activity in previous research, subsequent

analyses focused on a subset of 10 electrodes (F3, F4, F7,

F8, Fz, P3, P4, P7, P8, Pz) centered within these respective

brain regions.

The results of the study revealed a significant

increase in the maximal power of theta and alpha waves

in the frontal lobe (F3, Fz, F4) during the robotic task.

Additionally, the maximal power of alpha, beta, and

gamma waves in the parietal lobe (P3, P4, Pz) showed

significant differences across the three task load

conditions. Specifically, alpha power in the designated

channels exhibited a decreasing trend, while beta,

gamma, and theta power in the determined channels

showed an increasing trend as the task load progressed

through the three predetermined levels (Tables 3 and 4).

A two-way repeated-measures ANOVA was conducted

to examine theta, alpha, beta, and gamma oscillatory

activity in the frontal and parietal cortices and related
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electrodes as a function of varying cognitive demands

during a robotic task. Post-hoc analysis revealed a

significant difference between low and medium,

medium and low, and also between low and high

cognitive load concerning all four frequency bands.

For theta in the frontal region, channel F3 [F(2,32) =

614.78, P < 0.001, ηp2 = 0.975], channel F4 [F(2,32) = 412.31,

P < 0.001, ηp2 = 0.963], and channel Fz [F(2,32) = 1281.86, P

< 0.001, ηp2 = 0.988] showed significant differences.

Regarding alpha band power, channel P3 [F(2,32) =

236.44, P < 0.001, ηp2 = 0.937], channel P4 [F(2,32) =

290.41, P < 0.001, ηp2 = 0.948], and channel Pz [F(2,32) =

369.58, P < 0.001, ηp2 = 0.959] indicated significant

differences between the load conditions. This

significance for alpha band power in the frontal region

for channels P3, P4, and Pz was [F(1.48,23.8) = 240.64, P <

0.001, ηp2 = 0.938], [F(1.63,26.17) = 240.64, P < 0.001, ηp2

= 0.933], and [F(1.88,30.15) = 324.273, P < 0.001, ηp2 =

0.953], respectively.

One of the most notable findings of our study

demonstrates a significant relationship between

varying workload levels and changes in parietal beta

and gamma band power. The main effects of the gamma

band were observed in channel P3 [F(2,32) = 594.84, P <

0.001, ηp2 = 0.974], channel P4 [F(2,32) = 473.87, P < 0.001,

ηp2 = 0.967], and channel Pz [F(2,32) = 582.81, P < 0.001,

ηp2 = 0.973]. For the beta band, significant effects were

found in channel P3 [F(2,32) = 587.58, P < 0.001, ηp2 =

0.973], channel P4 [F(2,32) = 646.8, P < 0.001, ηp2 = 0.976],

and channel Pz [F(2,32) = 654.69, P < 0.001, ηp2 = 0.976].

The average power of the signals for all frequency

bands is shown in Figures 4 to 6.

5. Discussion

Objective assessment of MWL, particularly using

physiological measures, is well-established in fields such

as surgery, aviation, and driving. However, industrial

operators interacting with automated systems have

received less attention. With the rise of robotics, HRI in

industrial settings is increasingly common. The primary

objective of this analysis was to extend the scope of

research in industrial HRI by concentrating on human

MWL and to further advance the development of

efficient and safe human-robot interface workstations.

The CWL, or MWL as synonymously mentioned above,

is a fundamental concept in the field of HRI

workstations. Despite its long history of study,

establishing robust evaluation methods for CWL

remains a challenge. The EEG, given its accessibility, has

become a popular choice for investigating CWL-related

cognitive processes (29). This study employs EEG to

evaluate the MWL in a simulated human-robot

industrial task. Employing EEG devices to assess

workers' cognitive abilities offers a promising avenue

for examining the MWL associated with robotic tasks

and the transitions between them. This approach

provides a valuable tool for understanding the cognitive

demands of HRIs and optimizing task design to

minimize cognitive load.

Based on previous research, three potential

explanations for the inconsistent findings were

hypothesized. First, the workload manipulations

employed in prior studies may have been insufficient to

induce significant changes in neural activity or may

have reached a saturation point. Second, individual

differences in baseline brain activity, task-related

cognitive strategies (including attention allocation and

working memory utilization), and performance levels

might have obscured systematic relationships between

CWL and EEG spectral power. Third, considering the

growing use of robotic assistants in simulated

industrial contexts, it is proposed that cognitive

demand may arise as a consequence of HRI.

Theta band power in the frontal cortex is susceptible

to increasing CWL. Higher task demands correlate with

elevated theta activity in this region. Given the

established link between frontal theta and cognitive

processes such as working memory and executive

function, these findings suggest that theta power may

serve as a Neural Index of the brain's effort to manage

and manipulate information under demanding

conditions (30). A prevailing consensus in the literature

suggests that elevated CWL is often accompanied by

increased theta band power during ecologically valid

tasks (31). However, a more in-depth examination of the

empirical evidence revealed inconsistent findings

regarding the relationship between CWL and theta and

alpha band oscillations (32). In contrast, laboratory-

based studies have demonstrated more consistent

associations between theta and alpha band frequency
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Table 3. Electroencephalography Absolute Power Measured at Different Task Levels for a Specific Set of Channels a

Brain Wave (Regions) and Channels Low Medium High P-Value ηp2 Pholm b

Theta (frontal)

F3 15.59 ± 0.55 19.22 ± 0.46 21.86 ± 0.46 0.0000 0.975 P1= 3.7861E-12; P2 = 6.6851E-16; P3 = 1.3371E-10

F4 15.92 ± 0.6 19.49 ± 0.58 21.93 ± 0.5 0.0000 0.963 P1 = 4.1906E-11; P2 = 1.9112E-14; P3 = 5.0737E-9

F7 16.39 ± 0.54 16.34 ± 0.38 16.61 ± 0.37 0.2 - -

F8 16.44 ± 0.6 16.41 ± 0.4 16.41 ± 0.49 0.8 - -

Fz 15.6 ± 0.37 19.42 ± 0.54 22 ± 0.53 0.0001 0.988 P1 = 3.867E-14; P2 = 7.8737E-19; P3 = 3.2343E-13

Alpha (parietal)

P3 11.25 ± 0.51 9.11 ± 0.38 7 ± 0.77 0.0002 0.937 P1 = 6.9468E-11; P2 = 3.097E-12; P3 = 2.2435E-7

P4 11.36 ± 0.43 9.11 ± 0.47 7.28 ± 0.5 0.0003 0.948 P1 = 1.2573E-10; P2 = 5.457E-13; P3 = 5.8784E-8

P7 13.27 ± 0.48 13.36 ± 0.62 13.21 ± 0.41 0.6 - -

P8 13.11 ± 0.42 13.15 ± 0.45 13.47 ± 0.53 0.07 - -

Pz 11.31 ± 0.49 9.11 ± 0.51 7.15 ± 0.54 0.00007 0.959 P1 = 3.9762E-10; P2 = 3.7379E-13; P3 = 4.8679E-11

Alpha (frontal)

F3 11.13 ± 0.43 9.07 ± 0.42 7.13 ± 0.67 0.0002 0.938 P1 = 7.0232E-12; P2 = 1.2355E-12; P3 = 9.149E-8

F4 11.25 ± 0.57 9 ± 0.43 7.08 ± 0.61 0.0001 0.933 P1 = 4.3172E-9; P2 = 5.7815E-12; P3 = 8.5047E-10

F7 13.37 ± 0.54 13.35 ± 0.5 13.15 ± 0.5 0.28 - -

F8 13.49 ± 0.4 13.51 ± 0.48 13.43 ± 0.53 0.39 - -

Fz 11.07 ± 0.44 9.09 ± 0.34 7.32 ± 0.4 0.0001 0.953 P1 = 9.7632E-10; P2 = 5.458E-14; P3 = 2.434E-10

a Values are expressed as mean ± SD

b P1, low to medium; P2, low to high; P3, medium to high.

Table 4. Electroencephalography Absolute Power Measured at Different Task Levels for a Specific Set of Channels a

Brain Wave (Regions) and Channels Low Medium High P-Value ηp2 Pholm b

Beta (Parietal)

P3 10.73 ± 0.51 13.45 ± 0.57 16.85 ± 0.36 0.0005 0.973 P1 = 2.8383E-10; P2 = 1.7455E-17; P3 = 2.9694E-12

P4 10.58 ± 0.48 13.45 ± 0.31 16.8 ± 0.64 0.0002 0.976 P1 = 5.2999E-13; P2 = 7.3577E- 17; P3 = 2.0943E-11

P7 12.61 ± 0.57 12.37 ± 0.53 12.43 ± 0.5 0.2 - -

P8 12.32 ± 0.39 12.52 ± 0.51 12.48 ± 0.43 0.43 - -

Pz 10.7 ± 0.57 13.37 ± 0.45 16.79 ± 0.47 0.0003 0.976 P1 = 9.0472E-11; P2 = 8.6309E-17; P3 = 2.7439E-13

Gamma (parietal)

P3 10.84 ± 0.59 13.58 ± 0.58 16.74 ± 0.38 0.0001 0.974 P1 = 1.7269E-10; P2 = 2.0546E-16; P3 =2.7259E-13

P4 10.77 ± 0.58 13.75 ± 0.37 16.68 ± 0.62 0.0002 0.967 P1 = 4.2864E-11; P2 = 2.8998E-16; P3 = 1.8809E-10

P7 10.7 ± 0.49 10.83 ± 0.5 10.81 ± 0.47 0.6 - -

P8 10.74 ± 0.64 10.7 ± 0.38 10.61 ± 0.56 0.8 - -

Pz 10.54 ± 0.48 13.43 ± 0.44 16.62 ± 0.56 0.0001 0.973 P1 = 1.5129E-12; P2 = 1.7475E-15; P3 = 5.3886E-12

a Values are expressed as mean ± SD.

b P1, low to medium; P2, low to high; P3, medium to high.

modulations and cognitive processes such as working

memory and attention (33).

In our study, the experimental findings revealed a

statistically significant relationship between theta and

alpha band activity in the F3, F4, and Fz channels and
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Figure 4. Mean theta band power per frontal channel for all subjects

fluctuations in workers' mental load. Furthermore,

distinct patterns were observed in the alpha, beta, and

gamma bands of the P3, P4, and Pz channels during task

transitions from low to high, supporting the association

between cognition and the parietal region, which is in

line with the study results of Klimesch, Roux and

Uhlhaas (33, 34).

The observed effect sizes, as measured by partial eta-

squared (ηp2), were large, indicating that cognitive load

had a considerable impact on EEG activity in frontal and

parietal regions. Specifically, theta power in frontal

regions and alpha, beta, and gamma power in parietal

regions were significantly influenced by the varying

levels of task demand. Alpha brainwave power exhibits a

negative correlation with CWL; as task demands

increase, alpha power tends to decrease (35, 36). In our

study, as the workload increased from low to high, a

https://brieflands.com/articles/healthscope-158096
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Figure 5. Mean alpha band power per parietal channel for all subjects

decrease in alpha band power was observed at the P3, P4,

and Pz electrodes.

In contrast with our results, John et al., who worked

on cognitive complexity during unexpected robot

interaction under different MWL states in a physical

human-robot collaboration, reported an increase in

central alpha and beta power with increasing cognitive

load (37). Traditionally associated with a state of wakeful

relaxation, alpha desynchronization is a well-

documented neural correlate of cognitive engagement

(33, 38).

To bolster the ecological validity of our research,

future investigations will be conducted in authentic HRI

settings. While laboratory experiments can impose

stringent restrictions on participant behavior to

https://brieflands.com/articles/healthscope-158096
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Figure 6. Changes in alpha, beta, and gamma band power within the selected channels. The figure illustrates only those channels that demonstrated statistically significant
differences between the three task load conditions. F7, F8, P7, and P8 channels didn’t show any significant differences in frequency bands.

mitigate the influence of artifacts on EEG recordings,

such constraints are infeasible in real-world work

environments. Consequently, the presence of artifacts in

EEG data collected in naturalistic settings presents

significant challenges for data analysis. Recent

investigations have emphasized the potential of

particular EEG device configurations to reduce the

impact of artifacts and noise stemming from physical

movement. For instance, Hwang et al. employed an ear

canal EEG system, a technology known for its resilience

to artifacts generated by physical movement (39).

This study sought to enhance our understanding of

the fluctuations in CWL experienced by industrial robot

operators during simulated tasks. Power spectral

density (PSD) was utilized to extract valuable insights

from the participants' brain activity while they

performed tasks of varying complexity. The EEG spectral

power, particularly within the alpha and theta

frequency bands, is a reliable indicator of human MWL.

These frequency bands exhibit dynamic changes in

response to fluctuating cognitive demands (3).

Future work can extend the current EEG studies to

better understand the evolution of workload. This study

conducted a series of measures utilizing a highly

simulated remote robotic control environment to

systematically investigate the cognitive demands

associated with industrial automation. By employing a

comparative analysis of multiple physiological

measures, it is anticipated that a more nuanced

https://brieflands.com/articles/healthscope-158096
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understanding of the factors contributing to MWL in

industrial operators will be achieved.

Finally, the overarching benefit of this research lies in

enhancing the safety of operators and workers in

industrial settings. By gaining a deeper understanding

of the CWL experienced by robot operators during

different tasks, training programs can be optimized.

This optimization can also be considered for designing

assistive robots and refining systems to foster successful

outcomes.
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