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Abstract

Background: Sorption coefficient modeling is an effective technique for investigating fate and behavior of environmental pollu-
tants. As a polycyclic aromatic hydrocarbon (PAH), Phenanthrene is an important organic pollutant, mainly due to its health risks
for humankind.
Objectives: To offer an alternative for laborious and high- priced experimental measurements, this study aimed to introduce an
accurate artificial intelligence-based model, using minimum input data, to predict soil sorption coefficients (Koc and Kd) of phenan-
threne.
MaterialsandMethods: The required data were derived from previous studies carried out on soil samples taken from an under pas-
ture paddock at Flaxley agriculture centre, mount lofty ranges, South Australia (Ahangar et al., 2008). An eight-fold cross-validation
technique was also used to choose the best performance model and to obtain more authentic and precise results.
Results: Multilayer perceptron (MLP) artificial neural network (ANN) model with a 1-6-1 structure was chosen which explained 97%
and 95% of Kd and Koc variances, respectively. The only input data was soil organic carbon content.
Conclusions: Based on this study, the ANN method is a promising alternative for conventional methods in modeling and estimating
sorption coefficients in relation to soil organic carbon.
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1. Background

Polycyclic aromatic hydrocarbons (PAHs) are abun-
dant and important environmental non-ionic pollutants.
These organic compounds, which are extracted from emis-
sions of anthropogenic sources, annually comprise their
largest part worldwide (1). Synthetically, PAHs are formed
during anthropogenic activities such as incomplete burn-
ing or pyrolysis of carbon-containing materials like coal,
wood, oil products and garbage in air-deficient environ-
ments (2), which like other similar contaminants, can be
found globally in different amounts in soils (3, 4) and can
be identified in a variety of waters and wastewaters. They
rarely dissolve in water, but have solubility in organic sol-
vents and are highly lipophilic (5). Phenanthrene, a poly-
cyclic aromatic hydrocarbon (PAH), is an important class
of organic pollutants, mainly because of its wide distri-
bution in the environment and its carcinogenic and mu-
tagenic properties (6, 7). The chemical structure and at-
tributes of the phenanthrene are shown in Figure 1 (8).

Organic pollutants are of concern because they have
toxic effects on living organisms including human. These
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Molecular Weight, g/mol                                             178.2  

Melting point, °C                                                             99.5 

Vapor Pressure, Pa                                                           0.022 at 20°

Water solubility, S , at 25°C , mg/L                                    1.28  

Log Kow (unitless )                                                              4.46 

Density (g/cm3)                                                                 1.02  

Henry’s Law Constant (25 °C) (Pa m 3 mol -1)      0.001 

 

Figure 1. Chemical Structure of Phenanthrene

toxic effects can be either acute or chronic and include dis-
ruption of the endocrine, reproductive and immune sys-
tems, neurobehavioral disorders, and carcinogenicity (8).

Depending on PAH type and exposure mode, exposure
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to these pollutants has contributed to an increasing risk of
cancer development in different tissues including bladder,
lung, stomach, skin and scrotum (9). As an organic pollu-
tant, phenanthrene is also toxic and can enter human body
through ingestion, breathing, or skin sorption. It is known
as a human skin photosensitizer and mild allergen, and
under specialized conditions, it is mutagenic to human mi-
crobial system (10).

Existence of PAHs in the environment and especially
in soil causes a serious risk to human health over each
food chain. To describe fate and behavior of organic con-
taminants, numerous environmental scholars have con-
firmed and used two parameters: (i) the soil sorption co-
efficient (Kd) and (ii) the soil organic carbon sorption coef-
ficient (Koc). These parameters show the strength of con-
taminants’ sorption to obtain surfaces at the water/solid
interface; thus, it can demonstrate the environmental mo-
bility and persistence (11). The higher their values, the more
strongly the pollutants are absorbed to the interface, and
consequently, they would be less moveable (12).

Several models such as constant partition coefficient,
practical parametric Kd model, and empirical equations
have been suggested to estimate Kd values. General equa-
tions predicting Kd , mostly derived empirically from sta-
tistical analysis, possess a linear or nonlinear polynomial
framework; though, their accuracy is not so satisfactory
(13).

Due to variances in the experimental conditions,
chemical-based techniques for predicting Koc involve mea-
surement errors. Even when these variations are accepted
statistically, property measurements are costly and labo-
rious (14). The methods applied to estimate Koc act in ac-
cordance with the statistical relationships with other at-
tributes such as octanol/water partition coefficient (Kow),
water solubility (S), molecular descriptors (e.g. first-order
molecular connectivity index, and bioconcentration fac-
tors (BCF)) (15, 16). In fact, the relationships, suggested in
the literature, expressed in a log-log form, were obtained
by regression: Log (Koc) = a Log (S, Kow, or BCF) + b (a and
b are constants). Chemical property estimation programs
like AUTOCHEM estimate Koc from Kow using the ‘Log (Koc)
= -0.55 Log (Kow) + 1.377’ equation. The CHEMEST computer
program, which estimates chemical properties, allows the
user to estimate Koc using equations similar to those used
by AUTOCHEM (17). Karickhoff et al. (18) studied Kow and
Koc for a series of polycyclic aromatics and chlorinated hy-
drocarbons including phenanthrene and obtained a cor-
relation coefficient of 0.98 between them. Evaluating the
detailed absorptive behavior of four PAH compounds with
various chemical and structural characteristics, Means et
al. (19) reported an extremely significant correlation be-
tween Koc and Kow, both in log form (R2 = 0.98). Karick-

hoff (20) developed equations for estimating Koc from S
and Kow. The correlation coefficients for linear and loga-
rithmic forms between Koc and Kow were 0.994 and 0.997,
respectively. Investigating the relationship between the
topological indices and the sorption coefficient (Koc), Tao
and Lu (21) analyzed the molecular connectivity indices
and polarity correction factors based on 543 chemicals,
employing a stepwise regression for their effect on a lin-
ear model. Subsequently, they developed a linear model
using three indices of molecular connectivity along with
a set of polarity correction factors, whose R2 values were
greater than 0.86. Toul et al. (22) obtained an empirical re-
lationship between Koc and Kow values, which is applicable
for a variety of values with both parameters and for a wide
scale of pollutants/absorbents. Based on various topolog-
ical molecular descriptors, Mishra et al. (23) also built
several quantitative structure-activity relationship (QSAR)
models to estimate the Koc of the replaced anilines and
phenols, and reported that a tetra-parametric model was
optimal for re- modeling such compounds. However, the
complexity of soil and environmental behavior led to stud-
ies that attempted to present more simplified models with
lower and easier-to-obtain required data.

Artificial Neural Networks (ANNs), like other elastic
and systematic methods that are more appropriate than
the empirical models, were used for adapting the nonlin-
ear relationships and complicated interactions (i.e. hid-
den relationships between input variables). Recently,
ANNs have become common tools employed by scholars
to predict the amount of contamination and concentra-
tion of various effluents and chemicals available in drink-
ing water, wastewater, and groundwater. ANNs are mostly
applied to diverse issues reflecting successful results (24,
25). Likewise, several scholars have proved the applicabil-
ity of ANN to adsorption systems (26-28). Gao et al. (14)
used linear regression and ANN to predict Koc from Kow
and S. Diaconu et al. (27) used ANN for estimating the
amount of phosphate pollutant adsorption and its adsorp-
tion rate to soil, and confirmed the capability of ANN. Sim-
ilarly, Snidgha (28) applied an optimization approach to
create a neural network with three layers to predict the effi-
cacy of removing phenol pollutant from aqueous solution,
using peat soil as an adsorbent.

To the best of our knowledge, unfortunately, there is
no work regarding phenanthrene sorption coefficients (Kd

and Koc) modeling using soil organic matter (SOM) as input
data, especially with the aid of artificial neural networks.
Therefore, the aim of the current study was to investigate
the accuracy of ANN models with minimum required data
for estimating Kd and Koc and for modeling the pollutant
(phenanthrene).
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1.1. Artificial Neural Networks Model

As a processing inspired tool, an ANN is similar to bi-
ological nervous systems in processing information and
includes a variety of highly interconnected processing el-
ements (neurons) working together for problem solving.
Being able to extract meaningful relationships from com-
plex or vague data, ANNs are used to detect complicated
formats and trends, which can be too challenging for
humans (27). Like natural networks, some neurons re-
ceive problem data (input layer neurons) in these models,
whereas some other ones (hidden layer neurons) process
them and another group (output layer neurons) present
answer (29). Therefore, each neural network has its own
input and output layers whose neuron amount is deter-
mined by the given problem, and the decision designer
(decision maker) will set the hidden layer (the number of
its neurons). In this layer, i.e. network training, the proce-
dure of determining connection weights for neurons with
purpose of finding the set of weights between the neu-
rons can determine the minimum number of errors pro-
cessed. To allocate the connection weights, the gathered
data of the examples of the given issue were used. Then,
a computer program was used to determine the relative
weights and to represent the problem behavior using the
mentioned information. This process was corresponding
with the network fitting to the training data (27). Next,
the values allocated to the input layer were multiplied by
the weights of their own cells and of the next cells, and
then, they were transferred to the following layer. Finally,
all the inputs were summed in the next layer and the re-
sults were derived from its activity task, resulting in the
cell’s output. The obtained rates of the latter layer included
the responses offered for the problem, which would be the
main answers after comparing with the observed values,
if the calculation error was acceptable (30). The usual al-
gorithm for training networks is back propagation (BP). In
BP, which is a supervised learning method, error values are
calculated after each learning cycle and then the weight
correction signals are distributed in the network. One of
the most important parts used for determining the opti-
mal structure of ANN is determining the number of neu-
rons in hidden layer and achieving the lowest error, which
is obtained by trial and error (31). Compared to other meth-
ods, an advantage of the ANN model is that it does not need
previous information about relations between inputs and
outputs. In addition, it is less sensitive to error in input
data. In other words, by using the minimum measured pa-
rameters, this model is able to predict target variables vari-
ation precisely (32).

1.2. Artificial Neural Networks Description

To design and train the ANNs, a series of input and out-
put including organic content and phenanthrene sorption
coefficients, respectively, was necessary.

Due to the limited number of data and to obtain
more reliable results, a cross-validation was used for select-
ing the best performing models which provides a means
for building different training/testing splits guaranteeing
that each data point is present at least once in the testing
set. The whole phase is simple: (i) split the data into equal-
sized groups. (ii) for I = 1 to n, select group i as the testing
set and all other (n-1) groups as the training set. (iii) Train
the model on the training set and measure it on the test-
ing set. This iteration is called a fold. In general practice,
setting n = 10 or 10-fold cross-validation is accepted, as it
provides a very accurate estimate of the generalization er-
ror of the model (33).

As far as there were 32 input samples in this study, an
eight-fold cross-validation was used. To perform this pro-
cedure, the input data were divided into eight equally-(or
nearly equal) sized parts (folds). Then, eight series of iter-
ation of training and validation were conducted. During
each step, a various segment of the data was used for val-
idation and the other folds were used for training. Next,
the trained models were used to predict the validity of
data. Therefore, a network was once built and assessed
with a new set of data. Due to performing a reliable test
on a smaller set of data and a number of computational
attempts, this procedure seems superior to the simpler
trained-and-tested process, and results in eight networks.

The normalization of inputs is crucial for preventing
any decrease in speed and correctness of network, as well
as making data values equal (34). After normalizing the
data by Equation 1, the mean of the data series was 0.5 (35).

(1)xn = 0.5

[
x− xm

xmax − xmin

]
+ 0.5

Where xn is the normalized value, x is the actual value,
x-bar xm is the mean value, xmin is the minimum value, and
xmax denotes the maximum value of parameter.

For modeling with ANN, a multilayer perceptron (MLP)
network was used with MATLAB 7.6 software. Changing
weights among different layers, which is called training
process, was repeated till the least differentiation between
observed and predicted data is obtained. In this process,
the learning rule was Marquardt-Levenberg using the sig-
moid and hyperbolic tangent (Tansig) functions (31). Fi-
nally, the trial-and-error method was employed to calcu-
late the number of neurons per hidden layer.
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2. Objectives

Reviewing the literature, there was no such work that
could predict phenanthrene sorption coefficients (Kd and
Koc) using soil organic matter as input data employing
ANNs; hence, this technique was used in this study to
calculate the sorption coefficient of the mentioned con-
taminant. The current research was an attempt to delve
into the ability of ANN models in forecasting Kd and Koc

varieties regarding various values of soil organic carbon,
and introducing the most accurate model with the min-
imum required inputs. Eliminating the need for labori-
ous and costly laboratory experiments, the resulted model
would be suitable for estimating the sorption coefficient
of phenanthrene in soils similar to the one used in the
present study.

3. Materials andMethods

As shown in Figure 2, the required data of the present
study were taken from the experiments carried out on soils
from a paddock under pasture at Flaxley agriculture cen-
tre, mount lofty ranges, South Australia. The soils com-
prised a set of ferric and eutrophic red chromosols on the
upper to mid-slopes and mottled eutrophic yellow chro-
mosols on the lower slopes (36).

Figure 2. Map of the Study Site
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Sorption experiments were carried out using a batch
equilibration technique at 25°C. To minimize variation in
ionic strength and to avoid dispersion, 0.01 M CaCl2 was
used as a background solution. Moreover, 200 mg L-1 HgCl2

was used as a microbial growth inhibitor (37). At the end
of the equilibration period, suspensions were centrifuged
at 3000 g for 20 minutes and 1mL aliquots of the super-
natant were filtered through 0.45 m Teflon filters and then,
they were analyzed. Phenanthrene concentrations were

determined using an Agilent 1100 series with high perfor-
mance liquid chromatograph (HPLC) equipped with diode
array detector and C18 column (250 mm × 4.6 mm inter-
nal diameter, 5µm particle size). The mobile phase was 70%
acetonitrile and 30% water and the flow rate was 1 mL per
minute. The retention time under these conditions was
15.70 minutes for phenanthrene. The detection limit was
approximately 0.05 mg L-1. Blanks without phenanthrene
and soil were analyzed and appropriate corrections were
applied. Sorbed concentrations were calculated from the
difference between the initial solution concentration and
the equilibrium solution (36).

3.1. Evaluating Artificial Neural Networks Model

Here, the R2 and root mean squared error (RMSE) statis-
tics validate the model accuracy. The first one represents
the correlation between the estimated and the observed
data:

(2)R2 = 1 − Σn
i=1(zi − z∗i )2

Σn
i=1(zi − zm)2

Where z*, z and zm are the estimated, actual and mean
values of components, respectively, and n is the number of
studied samples. RMSE (Equation 3) evaluates the model
based on the difference between the observed and the pre-
dicted values, where the smaller values denote more preci-
sion (38).

(3)RMSE =

√
1

n
(Σn

i=1 (Z∗ − Z))2

4. Results

Carbon content and sorption coefficients (Kd and Koc)
as well as their statistical description for all samples are
shown in Table 1. The range of Kd values extended from 107
to 2130 L Kg-1, and Koc varied in the range of 16628 to 75019
L Kg-1. Coefficient of variation (CV) was used for explain-
ing the amounts of soil and yield variations. Wilding (39)
also categorized CV values into three classes of highly (CV >
35%), moderately (15% < CV < 35%), and lowly variable (CV <
15%). In this regard, carbon contents, Kd and Koc were clas-
sified as highly variable.

The parameters of the best structure for each network
were calculated (Table 2). Both input and output layers con-
sist of a node, which is comprised of the organic carbon
and the sorption coefficients, respectively. There were six
nodes in the hidden layer for Kd and Koc and the optimal
iteration was 1000; however, tansig was the most efficient
transition function (Table 2).

To evaluate the performance of the ANN model, the ex-
perimental data for Kd and Koc were plotted against the
ANN output values (Figures 3 and 4, respectively).
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Table 1. Carbon Content and Sorption Coefficients (Kd and Koc) for all Samplesa

Number Carbon Content (%) Kd(L/kg soil) Koc (L/kg soil)

1 4.90 1311.00 26756.00

2 1.49 387.00 25973.00

3 4.24 1059.00 24985.00

4 2.03 481.80 23739.00

5 1.54 423.26 27484.00

6 0.62 172.41 27808.00

7 0.24 121.00 50416.00

8 5.67 2130.50 37575.00

9 2.49 650.83 26137.70

10 5.46 1322.99 24230.50

11 2.33 540.87 23213.20

12 4.63 1444.84 31219.57

13 1.86 509.91 27385.23

14 3.56 1043.42 29309.66

15 1.57 457.57 29070.39

16 3.63 1016.39 28038.36

17 1.56 387.24 24838.97

18 4.15 782.64 18872.41

19 2.09 348.20 16628.51

20 3.77 859.59 22806.88

21 1.52 286.51 18861.88

22 3.71 759.40 20485.63

23 1.64 318.93 19506.70

24 1.68 357.44 21228.37

25 0.33 155.34 46492.37

26 0.18 136.05 75018.98

27 1.23 274.43 22268.86

28 0.55 178.89 32689.66

29 0.18 109.68 60618.40

30 0.20 107.00 52778.83

31 1.09 213.24 19591.33

32 0.30 113.71 37686.98

Mean 2.20 576.91 30428.60

Max 5.67 2130.50 75018.98

Min 0.18 107 16628.51

CV (%) 75.63 83.66 43.57

aKd : soil sorption coefficient, Koc : soil organic carbon sorption coefficient.

After eight-fold cross-validation, the values of R2 and
RMSE for Kd by the ANN model ranged from 0.92 to 0.99
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Figure 3. Comparing experimental Data and ANN Output Values for Kd (L/kg Soil) of
Phenanthrene
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Figure 4. Comparing Experimental Data and ANN Output Values for Koc (L/kg Soil)
of Phenanthrene

and 15.67 to 110.79, respectively. These values ranged from
0.91 to 0.99 and 979.15 to 2655.84 for Koc (Table 3). Mean
values for the eight networks used in the eight-fold cross-
validation are presented in the last row of Table 3. The
higher the R2 values, the more the precision of the model.
Figures 3 and 4, Table 3 represent the most optimal accu-
racy of ANNs in predicting sorption coefficients. Low RMSE
and high R2 values revealed the power of ANN in replicat-
ing and estimating the varieties of Kd and Koc of phenan-
threne with soil organic carbon content variances, which
demonstrated the strong correlation of Kd and Koc as the
organic carbon of the soil.

5. Discussion

The high correlation between soil sorption coefficients
and soil organic carbon obtained in this study is in con-
sistency with the findings of Wauchope et al. (11), Hwang
and Cutright (40), Liyanage et al. (41), Wang and Keller
(42), Ahangar (43), and Umali et al. (44), which showed that
organic pollutants sorption increased with raising carbon
content.
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Table 2. The best Artificial Neural Networks Structures Properties for Predicted Values of Kd and Koc
a

Parameter Network Structure Transition Function Iteration Hidden Layer, No. NeuronNo. in Hidden Layer

Kd 1-6-1 Tansig 1000 1 6

Koc 1-6-1 Tansig 1000 1 6

aKd : soil sorption coefficient, and Koc : soil organic carbon sorption coefficient.

Table 3. Eight-Fold Cross-Validation Results for Kd and Koc
a

Networks Kd , L/kg Soil Koc , L/kg Soil

RMSE R2 RMSE R2

Network 1 27.50 0.99 1063.99 0.92

Network 2 25.15 0.99 1722.24 0.99

Network 3 101.42 0.93 979.15 0.95

Network 4 68.79 0.99 1698.87 0.91

Network 5 96.91 0.92 1489.18 0.93

Network 6 110.79 0.95 1417.57 0.95

Network 7 22.62 0.98 2655.84 0.98

Network 8 15.67 0.98 2535.79 0.97

Mean 58.61 0.97 1695.33 0.95

aRMSE: root mean square error, Kd : soil sorption coefficient, Koc : soil organic carbon sorption coefficient.

For examining the sorption of phenanthrene by heavy
metals polluted soils, Gao et al. (45) reported a great varia-
tion for Koc values in different soils (5064-11461 L/kg), which
was in agreement with results of the current study (high
CV values). Such variation could be due to the nature of
SOM and its compositional variances. In general, the ef-
fects of the nature or the site of SOM on the influential level
of the active organic matter used to absorb PAHs were rec-
ognized (46, 47).

Gao et al. (14) conducted linear regressions with
logKow, logS, and a combination of logKow and logS. Fur-
thermore, they applied a nonlinear ANN to correlate Kow
and S with Koc, and trained a simple neural network on
Kow and S which was also obtained from the literature.
The current study outcomes are similar to the results of
these researchers, who found out that comparing with lin-
ear models, ANNs were more powerful in fitting the val-
ues of Koc and exhibited a lower sum of square residuals.
High R2 values of resulted ANN networks in the research
demonstrated that ANN was also accurate enough to esti-
mate sorption coefficients. This could be due to the nonlin-
ear relationships between the inputs and outputs, where
in inputs there was a model less sensitivity to error. Fur-
thermore, our findings are consistent with the results of
Diaconu et al. (27), confirming the generalization ability of

ANN to forecast the rate of adsorbed phosphate pollutant
and its sorption volume on soil particles (with RMSE and R
values of 0.929 and 0.987, respectively). They are also sim-
ilar to the results of Snidgha (28) who reported the mean
square error (MSE) value of 0.001 and R of 0.993 between
the predicted and the observed values of neural network
model on phenol pollutant. In this regard, Falamaki (13)
used trained multilayer perceptron (MLP) and radial ba-
sis function (RBF) networks for estimating values of Kd for
nickel, taking pH as input. He also found that MLP network
could predict Kd better than RBF network and the results of
all networks were superior to the linear models.

5.1. Conclusions

This study introduced the ANN approach as an effi-
cient way for replicating and estimating the variability of
phenanthrene Kd and Koc values related to soil organic car-
bon content. That is, Kd and Koc values are highly associ-
ated with this quality of soil. The best array used for ANN
had one node in each input, one node in each output, and
six nodes in each hidden layer. Furthermore, 1000 was
the optimum value of iteration for the resulted structure
in which tansig was selected as the most efficient transfer
function. ANNs for Kd resulted in R2 and RMSE values rang-
ing respectively from 0.92 to 0.99 and from 15.67 to 110.79
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after eight-fold cross-validation. These values ranged from
0.91 to 0.99 and 979.15 to 2655.84 for Koc. In addition, this
study claims that for the first time, the predicted phenan-
threne sorption coefficients (Koc and Kd) have been used
for the artificial neural networks, so the scholars have sug-
gested ANN as a promising alternative for the conventional
methods of estimating this pollutant, mainly because of
the nonlinear and complex accounting relationships be-
tween the variables.
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