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Abstract

Background: Climate change and air pollution are linked. Both of them are expected to impact human health. Climate can increase
health risks from poor air quality and lead to emergencies. Forecasting health consequences of air pollution episodes is a matter of
great concern.
Objectives: The current study mainly aimed at simulating the climate change impact on emergency medical services (EMS) clients
caused by air pollution to estimate the future trend of EMS clients with cardiovascular and respiratory symptoms by 2050.
Methods: Future climate pattern was projected using general circulation model outputs under the scenario of two representative
concentration pathways (RCP2.6 and RCP8.5). Statistical downscaling was performed by LARS weather generator to produce high-
resolution synthetic time series weather dataset. Simulation was performed using an artificial neural network (ANN). Observed
climate and air pollutant variables were tagged as predictors in ANN, and EMS clients were considered as the target. Projected future
(2020 - 2050) climate and air pollution were applied to estimate the future trend of EMS clients.
Results: The climate pattern was predicted to become warmer and wetter in the study area (Tehran, Iran). Annual trend of EMS
clients with cardiovascular and respiratory symptoms increases under both RCP scenarios. Further increase is under RCP8.5 for
EMS clients with cardiovascular symptoms, and the least increase is under RCP2.6 for those with respiratory symptoms. Annual and
monthly trends of EMS clients with cardiovascular and respiratory problems are more sensitive to different groups of climate and
air pollution variables.
Conclusions: ANN is an executive tool to simulate the impact of climate change and air pollution on public health to estimate the
future trend of related morbidity and forecast short-term cases across the world.
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1. Background

The impacts of climate change on public health were
published in the intergovernmental panel on climate
change (IPCC) 2014 report (climate change 2014: impact,
adaptation, and vulnerability). Climate change affects the
social and environmental determinants of health. The po-
tential health impacts caused by global climate change
include temperature-related illness and death, extreme
weather-related health effects, air pollution-related health
effects, waterborne and food borne diseases, vector-borne

and rodent-borne diseases, food and water shortages, and
population displacement (1, 2). Extreme weather events,
heat waves, and air pollution are linked to adverse spe-
cific health effects on cardiovascular and respiratory sys-
tems (3-6). There is a complex interaction among air pol-
lution, weather, and human health outcomes (7). Future
air pollution-related morbidity under climate change pro-
jection may be of interest for studying the effect of climate
change on air quality and the potential health effects (8-
10). Predicting the future health impacts of air pollution
due to climate change is a complicated phenomenon that
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requires a multidisciplinary approach (3, 7). This is feasi-
ble by simulation and mathematical modeling. Until now,
predicting the future regional health impacts of climate
change and air pollution is one of the key research gaps
and furthermore needs innovative approaches (8, 11).

Recently, climate change projection, air pollution, and
their health consequences are widely studied (8, 9, 12). The
majority of such studies focused on O3-and PM2-5-related
health outcomes at global or regional level. Changes in
climate and air pollution emissions affect future air qual-
ity. Both air pollutants and climate variables have differ-
ent health impacts, and hence, most of the projections are
driven by climate change scenarios and/or future air pol-
lution emissions (8, 9, 13-15). According to the findings by
Szyszkowicz et al. in Canada, statistically, air pollution had
important effect on ED visits for headache and migraine
(16).

To understand future changes in climate, general cir-
culation models (GCMs) are used by researchers and cli-
mate experts. Since 1992, IPCC task group on data and
scenario support for impact analysis (TGICA) produced cli-
mate change scenarios and released in their assessments
reports (AR). Latest sets of these scenarios are known as rep-
resentative concentration pathways (RCPs) (17). They were
used in the assessment report five (AR5). RCP8.5, RCP6,
RCP4.5, and RCP2.6 (RCP3) are pathways that are common
reference points in climate change studies (17, 18). These
scenarios can be used to project future climates based on
various GCM outputs. GCMs have a coarse spatial reso-
lution, which can create problems to simulate some re-
gional or local applications. Statistical downscaling and
regional modeling are the most popular regionalization
techniques used in impact assessment studies.

Statistical downscaling is a technique that can produce
high-resolution climate data and requires identification of
the statistical relationship between regional or local cli-
mate variables and GCM outputs (as predictors). Then,
the abovementioned relationships are used in GCM exper-
imental outputs to project future climate pattern at the re-
gional or local level under RCP scenarios.

Stochastic weather generators (WGs) are computer
models that produce synthetic daily or sub-daily time se-
ries and the resolution is based on statistical characteris-
tics of the historical climate at the regional or local level.
LARS-WG is one of these WGs (19).

Since 1990, several studies are conducted to determine
the interaction among climate condition, air quality, and
their health consequences. The correlation between air
quality and hospital admission due to chronic and accrue
respiratory and cardiovascular diseases are released by
some researches (20). Air Q2.2.3 is used to find excess cases
of the cardiovascular and respiratory mortality (21). Most

of the linear and nonlinear statistical methods applied
to various applications include multiple linear regression,
principal component analysis, empirical orthogonal com-
ponent analysis, independent component analysis, cluster
analysis, land use regression, fine resolution atmosphere,
multi-pollutant exchange, stochastic, and artificial neural
networks (ANNs). Several studies applied ANNs to fore-
cast and predict the concentration of one or more air pol-
lutants over an area, as well as to identify health conse-
quences. The researchers also demonstrated the advan-
tages and disadvantages of the ANN method. At the be-
ginning of the current study, an algorithm was developed
and tested to improve the performance and solve the lim-
itations of the ANN technique (22). MLP is also used to in-
vestigate environmental problems (23). Both air pollution
episodes and extreme weather events are two environmen-
tal stressors.

2. Objectives

The current study mainly aimed at simulating the cli-
mate change impact on emergency medical services (EMS)
clients caused due to air pollution to estimate the EMS
clients’ trends in cardiovascular and respiratory morbid-
ity by the year 2050 and also to forecast short time number
of clients. It is necessary to support the efforts to mitigate
and prevent the response to the impact of climate change
on public health in large cities.

3. Methods

3.1. Study Area and Data

The current study was conducted in Tehran, Iran
(35°41′N, 51°25′E), situated at an altitude of 1000 - 1800 m
above the sea-level. In this megacity about 5521 out of all
47,284 mortality cases were due to air pollution in 2010
(24). The daily average and three-day moving average of
meteorological variables (maximum temperature, mini-
mum temperature, precipitation, wind speed, and relative
humidity), air pollutants (carbon monoxide, ozone, nitro-
gen dioxide, sulfide dioxide, and particular matter < 10,
2.5 µm in diameter), air quality index, and stability class
were used as model inputs. Current day and 1, 3, 5, and
7 days after EMS clients with cardiovascular and respira-
tory problems were selected as model outputs. To select
the best combination of these inputs and outputs, a pro-
cess was designed and tested to preprocess and optimize
the data model. This step was published in a previous ar-
ticle (22) and described the best combination of air pollu-
tants and weather variables that were most likely to influ-
ence the quantification of EMS clients with cardiovascular
and respiratory symptoms.
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To quantify the specific health impacts of future air
quality, the primary framework that integrated data from
1- recorded air pollutant concentrations and observed me-
teorological variables in the study area (regional weather
data and air pollution data), 2- GCM outputs for grid box
within which the study area is located (simulated or mod-
eled, historical and future, weather datasets), and 3- the
number of EMS clients with respiratory and cardiovascu-
lar problems was used.

3.2. Projecting Future Climate Patterns, Climate, and Air Pollu-
tion Scenario

In the current study, two of the RCP scenarios, RCP8-
5and RCP2.6, which assume a relatively high and low fu-
ture pathway, respectively, were selected. Ten GCM cli-
mate model outputs (USA NASA-GISS-E2-H, UK HadGEM2-
ES, South Korea HadGEM2-AO, Norway NorESM1-M, Japan
MIROC-ESM, Germany MPI-ESM-LR, France IPSL-CM5A-LR,
Canada CanESM2, Beijing BCC-CSM1.1, and Australia CSIRO-
Mk3.6.0) were used to project the future climate. In the cur-
rent study, change factor method was used. Furthermore,
statistical downscaling approach was applied to down-
scale daily outputs from the selected GCMs for the study
area (25). The latest version of LARS-WG version 5-5, which
is one of the successful downscaling tools, was applied to
project high-resolution climate condition in the study area
(19). The process of generating local-scale daily climate
data was performed in three steps as follows:

A. Site analysis or model calibration: thirty-year ob-
served daily weather data (1976 - 2005, recorded daily in
Mehrabad synoptic station) were analyzed to determine
their statistical characteristics. The Kolmogorov-Smirnov
(K-S), t test, and F test were applied to compare the prob-
ability distributions, mean values, and standard deviation
(19).

B. Model validation: By comparing the statistical char-
acteristics of the observed and synthetic weather series,
generated by the WG, the presence of any statistically sig-
nificant difference was determined among the parameters
(19).

C. Generation of future weather data: LARS-WG is usu-
ally adopted to regionalize or statistically downscale the
conditioning of the parameters on GCM outputs as pre-
dictors. The final version of LARS-WG was not incorpo-
rated into the new set of climate scenarios released in the
IPCC-AR5. However, the current study intended to use the
new set of phase 5 of the coupled model inter-comparison
project (CMIP5) released in the IPCC-AR5 (26).Thus, the
RCP scenario fills were produced by comparison of the ob-
served climate data in the study area, and the GCM outputs
were then applied on the LARS scenario fill to calibrate it to
generate future weather data.

The climate model outputs were downloaded from the
IPCC-data distribution center (DDC) site, which were his-
torical experiments (1976 - 2005) and future experiments
(2020 - 2049). The future experiments consisted of four
RCP scenarios termed as RCP8-5, RCP6, RCP4.5, and RCP2.6.
However, the current study selected RCP8-5 and RCP2.6. Ar-
cGIS10.2 was used to display Net-CDF (network common
data form) files. Furthermore, all these variables were
transferred to Excel.

The monthly averages of all groups (historical and fu-
ture) were calculated separately. Then, the abovemen-
tioned information of the two selected groups was com-
pared. Finally, future daily meteorological variables were
generated or simulated within the LARS-WG application.
Validation of these outputs was performed again.

3.3. Simulation

To simulate the climate change impacts on EMS clients
caused due to air pollution, ANN was applied. Neural net-
work is a powerful computational data-driven model that
can capture and represent a linear and nonlinear complex
input or output relationship (27-30). Multilayer percep-
tron (MLP) known as a supervised learning network is the
most commonly used neural network model. MLP can cre-
ate models that correctly map from input to output using
historical data; therefore, the model can then be used to
produce the output when the desired output is unknown.
The primary advantages of MLPs are that they are easy to
use and can approximate any input or output map. The key
disadvantages are that they train slowly and require exten-
sive training data. The software package Neuro-Solutions
for Excel, version 5.05 (Neuro-Dimension, Inc. Gainesville,
FL, USA, Neuro-Solutions Getting Started Manual Version 5)
was used to develop the NN model. Neuro-Solutions are an
icon-based simulation environment for neuro-computing
(www.nd.com). Thirty-year (during 1996 - 2005) observed
climate and air pollution datasets were tagged as inputs in
an ANN and the number of EMS clients with cardiovascu-
lar and respiratory problems were tagged as desired in an
ANN model for training, cross-validation, and testing.

MLPs were selected to create a neural network. MLPs
are layered feed forward network models that are typically
trained with static back propagation. After randomiza-
tion of the datasets and 60% of daily 30-year 16 inputs, 10
outputs of the abovementioned datasets were applied for
training, 15% for cross-validation, and 25% for testing the
network. A genetic algorithm (GA) was used to optimize
the NN (22, 29). The trial-and-error approach was applied
to develop and setup an appropriate neural network struc-
ture. Mean square error (MSE), root mean square error
(RMSE), coefficient of determination (R2), correlation co-
efficient (r), normalized mean square error (NMESE), and
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mean absolute error (MAE) were the six primary model per-
formance statistics used to assess the accuracy of the esti-
mate (31). Finally, the projected climate and air pollution
datasets were applied in the optimized ANN to estimate the
future (2020 - 2050) trends of EMS clients under the two
RCP scenarios.

4. Results

To generate local-scale daily climate data, 30 years of
observed weather data (1976 - 2005) in the study area site
were analyzed to compute site parameters using LARS-WG.
The parameter file was applied to generate synthetic daily
weather data in Mehrabad site, the observed and synthetic
data were compared, and then the WG was calibrated.
LARS-WG was used a scenario file to determine how the WG
parameter values could be perturbed. Changes in the av-
erage values of monthly P, Tmax and Tmin between the 1976
- 2005 baseline period and 2020 - 2050 future period were
derived from the output of GCMs for grid box within which
Mehrabad is located. In this regard, two RCP scenario files
(RCP2.6and RCP8.5) were applied to generate future daily
weather data by LARS-WG. The downscaled monthly mean
values of P, Tmax and Tmin under RCP2.6 and RCP8.5 were
plotted versus the historical amounts and are shown in Fig-
ure 1. It could be concluded that, overall, RCP2.6 and RCP8.5
predict a wetter and warmer climate in the current study
area by the year 2050.

To simulate the impacts of climate change on EMS
clients with cardiovascular and respiratory issues caused
due to air pollution, a feed forward MLP type of ANN was
applied. The trial-and-error approach was used to create
a network and training multiple times while varying any
one of the network parameters to search for the optimum
network. To protect against overtraining, cross-validation
was conducted as well, and the network performance was
tested. The topology of the optimized NN is shown in Fig-
ure 2. This figure shows that the number of hidden layers
is one, Tan Axon sets as the layer’s transfer function and
Momentum as learning rule, and also GA checkboxes are
used to determine the parameters. The average final MSEs
were 0.035 and 0.02 with standard deviations of 3.9E-05
and 0.0001, respectively for training and cross-validation.
This resulted in 15 epochs for learning and four epochs for
cross-validation approaches.

To determine the underlying relationships between
the inputs and outputs, as well as to improve the network
performance, sensitivity analyses were performed. Sen-
sitivity analysis of the mean of inputs showed that EMS
clients with cardiovascular problems were more sensitive
to three-day moving average SO2, three-day moving av-
erage NO2, and Tmax and Tmin; furthermore, EMS clients

with respiratory problems were more sensitive to three-
day moving average wind speed (WS), Tmax, and precipita-
tion (P). The results of these parameters are summarized in
Table 1, which shows a measure of the relative importance
among the inputs (predictors) that calculates the variation
in the target variables with the variation of inputs.

Table 1. Results of Sensitivity About the Mean of Each of Predictors

Sensitivity Cardiovascular Respiratory

Tmax 0.53190158 0.232535115

3-day moving average Tmax 0.336387868 1.144083461

Tmin 0.115081212 0.120029121

3-day moving average Tmin 0.979074374 0.257855563

Precipitation 0.355735772 0.190726985

3-day moving average
Precipitation

0.449601238 0.619868614

3-day moving average wind
speed

0.028363058 4.472595579

Humidity 0.242542928 0.030085166

3-day moving average Hu 0.240278173 0.326288843

3-day moving average CO 0.081577202 0.195392013

3-day moving average O3 0.51373712 0.182691071

3-day moving average NO2 1.024564819 0.004833397

3-day moving average SO2 2.263323925 0.257004889

3-day moving average PM10 0.229622641 0.169582589

PM2.5 0.148106034 0.044413066

3-day moving average AQI 0.124022738 0.107803453

To estimate the future trend of EMS clients, the pro-
jected scenario’s datasets were applied on the optimized
NN data-driven model. These datasets contain daily values
of climate variables and air pollutants for 30 years (2020
- 2049). The trends of the EMS clients with cardiovascular
and respiratory problems for the years 2020 - 2050 under
the two scenarios (RCP2.6 and RCP8.5) are shown in Figure
3.

It can be concluded that both problems increase by the
year 2050 and cardiovascular problems further increase
under the RCP8.5. Further cardiovascular problems occur
in summer and winter.

Simulated monthly averages of respiratory and car-
diovascular EMS clients under the two RCP scenarios are
shown in Figure 4. Further cardiovascular problems occur
in summer and winter.

Monthly averages of respiratory and cardiovascular
EMS clients are shown in Figure 4. The least emergency res-
piratory clients are in warmer months (June, July, and Au-
gust) and further in December, January, and February un-
der RCP2.6.
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Figure 1. Future monthly mean of A, precipitation (p); B, maximum temperature (Tmax .); C, minimum temperature (Tmin)

Figure 2. Optimized ANN structure for simulation in the study

5. Discussion

Several studies applied ANNs to predict the concentra-
tion or emission of one or more air pollutants in an area
(9, 27, 28, 30-34). They applied various methodologies to
forecast future air pollution conditions, as well as climate
change impacts on air quality. They focused on this issue
and investigated it as an open problem. Recently, studies

are conducted to project future air pollution-related mor-
tality or morbidity under a changing climate, although
each of them has limitations (8). GCMs or regional cli-
mate models are used to project future air pollutant lev-
els and their health consequences (35). GCMs or regional
climate models (RCMs) are used to project future air pol-
lutant levels and their health impacts by researchers. They
closely examined the uncertainties in this project and in-
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Figure 3. Trend of A, respiratory; B, c EMS clients by 2049
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Figure 4. Monthly average of A, respiratory and B, cardiovascular EMS clients

vestigated projection on a regional scale, in addition to
using multiple models to reduce these uncertainties (8).
In the current study, 10 GCM experimental outputs were
applied and compared with the 30-year recorded meteo-
rological values. Dynamical or statistical high-resolution
downscaling technique was used to estimate health con-
sequences caused due to air pollutants (13). In the current
study, statistical downscaling was performed using LARS
WGs to analyze and project future climate pattern under
two RCP (2.6 and 8.5) scenarios. Furthermore, in the cur-
rent study, LARS-WG was calibrated for these new scenarios
to generate future climate patterns.

Data-driven models such as ANNs were used to sim-
ulate air pollutant concentrations and their health out-
comes (28, 31, 33, 36, 37). Thomas and Jacko devel-
oped a multivariate regression and ANN model to fore-
cast PM2.5 and CO around an expressway (Borman). They
applied the wind speed, wind direction (transformed in
to wind direction Index), pressure, temperature, and the
speed of the vehicles as inputs and CO and PM2.5 as tar-

gets. By stepwise regression, they found that the wind
speed, wind direction, and temperature did not improve
the model performance. MLP ANNS was used by the MAT-
LAB software. The current study investigated both the re-
gression and ANNS successfully used to forecast air pollu-
tion episodes. They can be improved by including more
input variables. However, ANNS had a better performance
than regression due to the ability to model nonlinearity
(38). In another study, three standard MLP, time- lagged
feed- forward, recurrent ANNs and Bayesian ANNs were de-
veloped by Solaman et al. for ground-level ozone concen-
tration forecasting in Hamilton, Canada. SR, TMax, WS, W
direction, RH, dry-bulb temperature, and vapor pressure
were meteorological variables for the ozone forecasting.
They showed that all of these models could effectively fore-
cast the ozone concentration (31). Diaz-Robles et al. com-
pared the applicability of autoregressive integrated mov-
ing average (ARIMA), multi-linear regression (MLR), and
ANNS separately and in combination with air quality fore-
casting in emergency situations and found that a combina-

6 Health Scope. 2018; 7(2):e57786.

http://jhealthscope.com


Mohammadi H et al.

tion of the ARIMA-ANNS model was more accurate to fore-
cast pre emergency air pollution episodes (39). Moustris et
al. used the MLP feed forward ANNS to forecast the maxi-
mum daily value of NO2, CO, SO2, and O3 in Athens, Greece.
They compared seven structures of ANNS and found that it
was necessary to increase the input to obtain reliable fore-
casts (28). Noori et al. tested principal component analysis
(PCA) and GT to assess the effect of input variables on sup-
port vector machine (SVM) to predict stream flow. They re-
ported that preprocessing the inputs with both PCA and GT
methods improved the SVM performance (40). Inal devel-
oped MLP type ANNS with nine meteorological items and
nine air pollutants to predict ozone in Istanbul, Turkey and
compared its performance with nonlinear regression, but
found no significant difference between the two methods
(27). In this field, GA is applied to optimize the ANN topol-
ogy (29, 41). The researchers applied GA only to optimize
NN architecture, but in the current study, gamma statis-
tic and GA were used to preprocess and optimize the data-
driven model and determine the best combination of pre-
dictors. This could prevent the over-fitting of NN. In the
first stage of the current study, an algorithm was developed
to improve the capability of this technique to simulate the
health effect of air pollution, published earlier (22). More-
over, optimizing the file parameters, process elements in
input/hidden/output layer, transferring or learning func-
tions using GA were performed in the second stage of the
current study. The MLP type of NN was used to develop
the data-driven model to forecast the short-time effects
of weather variables on air pollution or predict the emer-
gency department visit for respiratory symptoms. The re-
searchers setup their NN with one to eight hidden layer(s)
and loaded a maximum of eight weather and air pollutant
variables; furthermore, these variables should optimize
the MSE to about 0.04 (28, 33, 37, 41). In the current study,
more predictors were considered to simulate future trend
of two desired outputs and develop a simpler model with
one hidden layer, realizing MSE of about 0.035 in training
and 0.02 in cross-validation. However, the eliminated in-
puts had a low effect.

Bibi et al. demonstrated that emergency department
visits were sensitive to temperature, humidity, barometric
pressure, SO2, and NO2 (37). Moreover, dependence of air
quality on meteorological variables was assessed by -, =, +,
and ++ signs (2). In the current study, sensitivity values of
current day and three-day moving average values of each
of the inputs on the prediction of EMS clients with cardio-
vascular or respiratory problems were determined (Figure
3). Annual or monthly trends of EMS clients with cardio-
vascular and respiratory problems depended on changes
and interactions of air pollutant levels and meteorological
conditions (Figures 3 and 4).

5.1. Conclusions

Results of the current study demonstrated a warmer
and wetter climate pattern in the studied area by 2050,
by projecting the future climate using outputs from GCMs
under the RCP2.6 and RCP8.5 scenarios using statistical
downscaling. LARS-WG is an efficient tool to generate, ana-
lyze, and compare between synthetic and observed climate
variables. Estimation of the future (2020 - 2050) trend
of EMS clients with cardiovascular and respiratory symp-
toms using the feedforward MLP type ANN indicated an in-
crease in these annual trends under both RCP scenarios, al-
though further increase is under the RCP8.5 for cardiovas-
cular problems and the least increase is under RCP2.6 for
respiratory problems.

Sensitivity analysis of the mean of predictors demon-
strated more efficient climate and air pollution variables
that were different for EMS clients with cardiovascular and
respiratory problems.

ANN is an executive tool for the simulation of the im-
pacts of climate change and air pollution on public health
to estimate future trends of related morbidity and to fore-
cast short-term cases across the world. Tools and algo-
rithms applied in the current study can be used for early
warning in emergency air pollution condition. Moreover,
these findings can apply for emergency response planning
in the future.

5.2. Limitations of the Study

- Lack of international classification of diseases (ICD) in
EMS records.

- Mehrabad station had upper atmospheric surface
level data between five other stations. Therefore, the cur-
rent study used just this station’s data to calculate the sta-
bility class.
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