

Catalytic Oxidation of Carbon Monoxide Using Copper-Zinc Mixed Oxide Nanoparticles Supported on Diatomite

Saeed Dehestani Athar¹, Hasan Asilian^{1*}

¹Environmental and Occupational Health Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran

A B S T R A C T				
Background : Diatomite coated by nanoparticles of copper and zinc mixed oxides were used to investigate catalytic oxidation of carbon monoxide.				
Objectives: Aim of this paper was to investigatediatomite performance as a supporting host to confine the CuO and ZnO nanoparticles and its catalytic activity for carbon monoxide oxidation.				
Materials and Methods: The prepared catalysts were characterized by Brunauer-Em-				
mett-Teller (BET) surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic behavior for CO oxidation was studied at different conditions in a tubu-				
lar reactor packed with catalyst.				
Results: The results illustrated that diatomite is the promising candidate for catalyst				
support due to its unique characteristics. The variation of catalytic activity of the pre-				
pared composite catalysts withdifferent molar fractions of CuO and ZnO for CO oxida-				
tion in different reaction temperatures was investigated.				
Conclusions: It was found that a CO conversion of 100% can be achieved at 300 °C over				
catalyst with 80 mol% CuO and 20 mol% ZnO content.				

▶ Implication for health policy/practice/research/medical education:

The content and results of this paper is useful for researchers who are interested in Air Pollution Control especially catalytic elimination of carbon monoxide as a pollutant using coated Nano catalyst.

Please cite this paper as:

Dehestani Athar S, Asilian H. Catalytic Oxidation of Carbon Monoxide Using Copper-Zinc Mixed Oxide Nanoparticles Supported on Diatomite. J *Health Scope*. 2012; **1**(2): 52-6.

1. Background

Carbon monoxide (CO) is produced by natural processes and anthropogenic sources. Inhalation of carbon monoxide gas can cause cardiovascular eventsand death (1). Catalytic oxidation of carbon monoxide is one of the most well-known methods to oxidize CO into carbon dioxide, different kinds of materials has beenused for the support of nanoparticles, some of these include: Al₂O₃, silica, MCM-48, Al-SBA-15, activated carbon fibers, Y-type zeolite and H-BEA zeolite (2-6). Diatomite is a lightweight sedimentary rock. Silicon dioxide is the main component of diatomite and some impurities such as iron, alumina and metal oxides are other components of diatomite. Diatomite has some unique characteristics such as: 80-90% pore spaces, numerous fine microscopic pores, cavi-

* Corresponding author: Hasan Asilian, Environmental and Occupational Health Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel/Fax: +98-2182883825, E-mail: asilia_h@modares. ac. ir

© 2012 Health Promotion Research Center.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ties and channels, high porosity (35-65%), good sorption ability, low density, high permeability, high surface area, excellent thermal resistance, wide variety of shape, different sizes and active hydroxyl groups on it (7-11). There are various considerable catalysts which has been supported on different oxide surfaces. Some catalysts presented in the literature are transition metal and noble metal clusters supported on Al₂O₂, SiO₂, TiO₂, Fe₂O₂ (12). Heretofore the catalytic performance of diatomite supported by copper and zinc mixed oxides nanoparticles for catalytic oxidation of carbon monoxide has been never reported. Since the exploration of new catalyst systems with more inexpensive and easier available supports is still a challenge, so the aim of this paper is the investigation of diatomite performance as a supporting host to confine the CuO and ZnO nanoparticles and its catalytic activity for carbon monoxide oxidation.

2. Materials and Methods

2.1. Catalyst Preparation

The diatomite was washed with tap water to remove impurities then dried in an oven at 105 °C for 24 h. The dried diatomite was sieved to a uniform size of 0.8-1 mm. Particle size and specific surface area of CuO and ZnO nanoparticles were 60, 20 nm and 80, 90 m²/g respectively. The following procedure was developed to insert copper and zinc oxide nanoparticles into pores of diatomite as homogeneously as possible: first the required amount of copper and zinc oxide nanoparticles placed into 200 ml deionized water to prepare different molar fractions. The mixed oxides of Cu-Znfollowed this formula [(CuO) _{Ly} (ZnO), in which xequals 0.1 0.2, 0.3, 0.4, and 0.5 which represented as $Cu_{90}Zn_{10}$, $Cu_{80}Zn_{20}$, $Cu_{70}Zn_{30}$, $Cu_{60}Zn_{40}$, Cu₅₀Zn₅₀, respectively, then stirring the suspension liquid for 30 min at pH of 7 at room temperature, and after that 100g diatomite was added to above solution, then gently stirring was carried out for 2h. After washing and drying at 105 °C for 24 h dried samples were calcined at different temperatures.

2.2. Catalyst Evaluation

Catalytic tests for the oxidation of carbon monoxide were carried out in a fixed-bed stainless steel tubular continuous flow reactor (3 cm inner diameter and 25 cm length) from room temperature to 500 °C and the catalyst activity was measured at steady state. The temperature being measured by a thermocouple placed into the catalyst bed. Analysis of the reaction products was carried out using a multi-component NDIR gas analyzer (Delta 1600 S-IV). The desired concentration of carbon monoxide was obtained by regulating the air and carbon monoxide streams via trial-and-error. The conversion of carbon monoxide was given by *equation 1*.

X (%) = $\frac{Ci - Co}{Ci} \times 100$ (1)

Where Ci: inlet carbon monoxide concentration (ppm) and Co: outlet carbon monoxide concentration (ppm).

2. 3. Catalyst Characterization

In order to determine crystal structure of the prepared catalysts X-ray diffraction (XRD) analysis was performed using Philips equipment with Cu K α radiation in a scanning range of 5-80° (2 θ). Elemental analysis of pure diatomite was determined by XRF technique. The surface areas of the catalysts were measured by N₂ adsorption with the BET method. Surface morphology of diatomite and coated copper and zinc oxide nanoparticles were characterized by means of scanning electron microscopy (SEM-Philips) equipped by EDX (Energy dispersive x-ray microanalysis).

3. Results

3.1. XRD and XRF Analysis

Figure 1 indicates the XRD patterns of the pure diatomite and prepared catalyst with different molar fractions of CuO and ZnO after calcinations at 450 °C. Elemental analysis of pure diatomite which was obtained by means of XRF technique is presented in *Table 1*.

Figure 1. XRD Patterns of the Pure Diatomite and Prepared Catalyst With Different Molar Fractions of CuO and ZnO, Calcined at 450 $^\circ C$

(a) Pure diatomite; (b) $Cu_{90}Zn_{10}$; (c) $Cu_{80}Zn_{20}$; (d) $Cu_{70}Zn_{30}$ and (e) $Cu_{60}Zn_{40}$

Table 1. The Elemental Analysis of Pure Diatomite by Means of XRF ^a									
Component	SiO ₂	Fe ₂ O ₃	MgO	K ₂ O	Al_2O_3	CaO	Na ₂ O	TiO ₂	P ₂ O ₅
Content, %	89	1.45	0.25	0.25	2.7	0.85	3.1	0.9	1.5

^a Abbreviations: XRF, X-ray Flaorescence

3. 2. SEM Study and EDX Analysis

*Figures 2*a and b are SEM photographs of pure diatomite and *Figures 2*d and e are secondary electron and backscattered of $Cu_{s0}Zn_{20}$ /diatomite respectively. *Figures 2*c and f are EDX analysis of pure diatomite and $Cu_{s0}Zn_{20}$ / diatomite respectively.

Figure 2. SEM and EDX Analysis of Pure Diatomite and Cu_{so}Zn₂₀/Diatomite

3. 3. Catalytic Activity

The variation of catalytic activity of the prepared composite catalysts withdifferent molar fractions of CuO and ZnO for CO oxidation as a function of reaction temperature was investigated and the results are illustrated in *Figure 3*. Surface areas of catalyst samples are indicated in *Table 2*.

For investigating the effect of contact time on the catalytic

(a) And (b) SEM photographs of pure diatomite (c) EDX of figure a (d) secondary electron of Cu80Zn20/diatomite (e) back-scattered of Cu80Zn20/diatomite (f) EDX of figure d

Table 2. Surface Area of Catalyst Samples							
	Calcination Tem- perature , °C	Total Specific Sur- face Area,m²/g					
Cu ₈₀ Zn ₂₀ /diatomite	300	150					
Cu ₈₀ Zn ₂₀ /diatomite	400	150					
Cu ₈₀ Zn ₂₀ /diatomite	500	148					
Cu ₈₀ Zn ₂₀ /diatomite	600	145					
Pure diatomite	-	95					

Figure 3. Catalytic Activity of Prepared Catalyst With Different Molar Fractions of CuO and ZnO, Calcined at 450 °C for CO Oxidation as a Function of Reaction Temperature

Figure 4. Influence of Flow Rate on the Catalytic Activity of $\mathrm{Cu}_{\mathrm{so}}\mathrm{Zn}_{\mathrm{20}}/\mathrm{Diatomite}$

activity of Cu₈₀Zn₂₀/diatomite, catalytic oxidation of carbon monoxide over this catalyst was studied at different flow rates. As shown in *Figure 4*, T₅₀ (190 °C) is lower at low flow rate (0. 5 l/min) than at a higher flow rate (1 l/min), which is due to the contact time. The reaction order of carbon monoxide oxidation was determined at T50 at which, the conversion of CO to CO₂ is 50% (T₅₀=190 °C). The inlet carbon monoxide concentration was varied from 1 to 5%. The corresponding carbon dioxide concentration in the outlet was calculated and the data are shown in *Figure 5*.

Figure 5. Determination of Reaction Order for CO Oxidation With Respect to Inlet Carbon Monoxide

Catalytic activity of $\rm Cu_{so}Zn_{2o}/diatomite,$ calcined at different temperatures for CO oxidation

4. Discussion

XRD and XRF analysisshows that cristobalite is the main crystal phase of diatomiteas illustrated in Figure 1. Because of higher thermal and chemical stability of cristobalite (13), this crystal phase of silica is preferred to amorphous SiO₂ for applying as a catalyst support. It can be seen that CuO and ZnO peaks appear properly and the peak intensity was enhanced by increasing the nanoparticles content. As illustrated in Table 1 SiO, is the main component (89%) and the metal oxides (Na₂O, Al₂O₂ and Fe₂O₂) are the main minor elements. SEM study and EDX analysis declare that porous structure can be observed on the surface of pure diatomite, whileafter coatingprocedure; the surface of diatomite was covered by nanoparticles. SEM back scattered electron (BSE) image is used for illustrating contrasts in composition and to reveal the mixed oxides particles clearly. BSE image indicated a distribution of mixed copper and zinc oxides particles on the surface of diatomite. Two different zones were indicated in back scattered electron image: white zone (CuO), and gray zone (ZnO). Si, Cu, Zn were indicated in EDX elemental analysis. Catalytic activity, as demonstrated in *Figure 3*, in which all catalysts indicate similar behavior as CO conversion increased with increasing the reaction temperature, while carbon monoxide conversion over pure diatomite was negligible. The catalytic activity of catalysts enhanced with increasing of ZnO content from 10 to 20 mol%, but descended with further increase of it. The Cu_{so}Zn₂₀ catalyst, exhibited the highest activity for CO conversion to CO₂. It was found in previous studies that CO conversion over CuO micro powder under oxygen rich conditions and surrounding temperature of 205 °C is about 15%, (14). But the results of present study illustrated that at temperature about 200 °C, the conversion of CO to CO₂ is 60% approximately, therefore the catalyst size is a critical factor in performance of catalyst and there is a synergistic effect between copper and zinc oxides for CO conversion. The excess ZnO species have negative effect on the catalytic activity, this counterproductive effect is because of ZnO agglomeration . As illustrated in Figure 6, and performance of catalyst is nearly constant. It was found in previous studies that CO conversion over nanosized iron oxide and CuO-Fe₂O₂ composite at temperature higher than 500 °C was decreased because of sintering, agglomeration of catalyst and the increase of particle sizes which decreases the number of active sites available for catalytic process (15, 16). But the present study demonstrates ability of diatomite to isolate copper-zinc mixed oxides atoms in its pores and so prevents sintering of atoms, which would greatly reduce the effective surface area of the catalyst. As demonstrated in Figure 6,the linear relationship between the effluent carbon dioxide concentration and the inlet carbon monoxide concentration indicated that the catalytic oxidation of carbon monoxide on Cu_{so}Zn₂₀/diatomite is first-order with respect to inlet carbon monoxide. similar order reaction of carbon monoxide over nano-sized iron oxide have been suggested (16).

5. Discussions

A new catalyst has been prepared by simple impregnation method: filling the pores of support with a solution of copper zinc composite oxide from which the solvent is subsequently evaporated followed by drying and calcinations. The variation of catalytic activity of the prepared composite catalysts withdifferent molar fractions of CuO and ZnO supported on diatomite for CO oxidation as a function of reaction temperature catalyst exhibited CO conversion of 100% at 300 °C over catalyst with 80 mol% CuO and 20 mol% ZnO content.

Acknowledgements

This research was supported by the Department of Environmental Health, TarbiatModares University of Iran. Authors are also grateful to Dr. A. Rezaee for providing

laboratory equipment.

Authors' Contribution

Saeed Dehestani Athar: 50% Hasan Asilian: 50%

Financial Disclosure

None declared.

Funding/Support

None declared.

References

- Raub JA, Marthieu-Nolf M, Hampson NB, Thom SR. Carbon monoxide poisoning-a public health perspective. *Toxicol.* 2000;145 (1):1-14.
- Bulushev DA, Yuranov I, Suvorova EI, Buffat PA, Kiwi-Minsker L. Highly dispersed gold on activated carbon fibers for low temperature CO oxidation. J Catal. 2004;224:8-17.
- Chiang CW, Wang A, Mou CY. CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods. *Catal Today*. 2006;117 (1-3):220-7.
- Derouane EG, Schmidt I, Lachas H, Christensen CJH. Improved performance of nano-size H-BEA zeolite catalysts for the Friedel-Crafts acetylation of anisole by acetic anhydride. *Catal Lett.* 2004;95 (1-2):13-7.
- 5. Jafari S, Asilian H, Kazemian H. Gold-nano particles supported on Na-Y and H-Y types zeolites: activity and thermal stability for CO

oxidation reaction. Catal Lett. 2008;**128** (1-2):57-63.

- Lin JN, Wan BZ. Effects of preparation conditions on gold/Y-type zeolite for CO oxidation. *Appl Catal B Environ*. 2003;41 (1-2):83-95.
- Arik H. Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite *Eu Ceram Soc.* 2003;23 (12):2005-14.
- Chaisena A, Rangsriwatananon K. Synthesis of sodium zeolites from natural and modified diatomite. *Mater Lett.* 2005;59 (12):1474-9.
- Hadjar V, Hamdi B, Jaber M, Brendle J, Kessaissia Z, Balard H, et al. Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. *Micropor Mesopor Mater.* 2008;107 (3):219-26.
- Martinovic S, Vlahhovic M, Boljanac T, Pavlovic L. Preparation of filter aids based on diatomites. *Int J Mineral Process*. 2006;80 (2-4):255-60.
- Nenadovic S, Nenadovic M, Kovacevic R, Matovic LJ, Matovic B, Jonanovic Z, et al. Influence of Diatomite Microstructure on its Adsorption Capacity for Pb (II). Sci Sinter. 2009;41 (3):309-17.
- Kandalam K, Chatterjee B, Khanna SN, Rao BK, Jena P, Reddy BV. Oxidation of CO on Fe₂O₃ model surfaces. Surf Sci. 2007;601 (21):4873-80.
- Akhtar F, Rehman Y, Bergstrom L. A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength. *Powder Technol.* 2010;201 (3):253-7.
- Huang TJ, Tsai DH. CO oxidation behavior of copper and copper oxides. Catal Lett. 2003;87 (3-4):173-8.
- Cao JL, Wang Y, Yu XL, Wang SR. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. *Appl Catal B Environ*. 2008;**79** (1):26-34.
- Khedr MH, Abdel Halim KS, Nasr MI, El-Mansy AM. Effect of temperature on the catalytic oxidation of CO over nano-sized iron oxide. *Mater Sci Eng A*. 2006;**430** (1-2):40-5.