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Abstract

Background: Hepatic stellate cells (HSCs) are liver-specific pericytes that transform into myofibroblasts, which are involved in
pathological vascularization in liver fibrosis. We previously suggested that A20 overexpression suppresses lipopolysaccharide (LPS)-
induced inflammation in HSC. We aimed to determine the mechanisms of the anti-inflammatory role of A20 in LX-2 cells.
Methods: LX-2 cells were transfected with A20-siRNA or control-siRNA and control adenovirus or A20-carrying adenovirus. Quan-
titative reverse transcription PCR (RT-qPCR) analysis was employed to quantify mRNA levels of α-SMA, col-I, col-III, IL-6, TGF-β, and
PDGF in A20-siRNA LX-2 cells stimulated with LPS. Multiple molecular indices of MAPK/ERK/JNK signal pathway were performed by
using Western blotting.
Results: Relative to control, the fibrosis-related mRNA levels of α-SMA, col-I, and col-III were increased in A20-siRNA LX-2 cells. Mean-
while, A20-siRNA cells significantly increased IL-6, TGF-β, and PDGF mRNA levels. Relative to controls, stimulating A20 overexpress-
ing LX-2 cells with LPS for 5 and 30 minutes significantly reduced the levels of phosphorylated ERK and JNK, respectively. A20 knock-
down in LX-2 cells promotes phosphorylated ERK and JNK levels with LPS for 30 minutes.
Conclusions: Our data indicate that A20 could be functional in HSCs through the MAPK/ERK/JNK signaling pathway, highlighting a
potential novel therapeutic strategy against liver fibrosis.
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1. Background

Hepatic fibrosis in chronic liver disease is character-

ized by excessive collagen deposition and is a major pub-

lic health concern (1, 2). During liver fibrogenesis, activa-

tion of hepatic stellate cells (HSCs) initiates processes lead-

ing to liver injury (3). Hepatic stellate cells are liver-specific

pericytes that transform into myofibroblasts, which are in-

volved in pathological vascularization in liver fibrosis (4).

Previous studies have shown that hepatic inflammation is

tightly associated with fibrosis (5).

Quiescent HSCs are vitamin A-storing cells located

in the perisinusoidal space near the sinusoid endothe-

lial cells (SEC) and hepatocytes (6). Hepatic stellate

cells can become activated due to chemokines and cy-

tokines released during liver injury. Activating signals in-

clude platelet-derived growth factors (PDGF), transform-

ing growth factor-β (TGF-β), and various cytokines, such as

interleukin-6 (IL-6) (7). The continuous activation of HSCs

can secret extracellular matrix (ECM) such as α-smooth

muscle actin (α-SMA), collagens, and inflammatory media-

tors, which contribute to hepatic inflammation and fibro-

sis (8). Thus, it is important to suppress hepatic inflamma-

tion in the initial stages of chronic liver diseases (7). Block-

ing or retarding the excessive inflammatory process could

be a major therapeutic target for preventing hepatic fibro-

sis.

Zinc finger protein A20 has been found to negatively

regulate inflammation with crucial physiological func-

tions that protect the liver (9, 10). Lipopolysaccharide (LPS)

can induce severe inflammation and enhance fibrosis in

liver damage models (11). Treating human HSCs with LPS

dramatically activates the inflammatory signaling path-

way and aggravates the accumulation of proinflammatory

chemokines (6). A20 is an intracellular ubiquitin-editing

enzyme that has been shown as a crucial hepatoprotec-

tive factor to prevent chronic liver inflammation (12). A20
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plays an important role in liver protection through lim-

iting inflammation following nonalcoholic fatty liver dis-

ease (NAFLD), chronic liver allograft dysfunction, hepatic

ischemia-reperfusion injury, and acute liver failure (ALF)

(10, 13-16). We previously suggested that A20 overexpres-

sion suppresses LPS-induced inflammation in HSC (17).

However, the mechanisms through which A20 reduces in-

flammation in HSCs are unclear. Here, we evaluated the

mechanisms of A20 anti-inflammatory effects in LX-2, a

HSC cell line.

2. Objectives

In this study, we aimed to determine the mechanisms

of the anti-inflammatory role of A20 in LX-2 cells via A20

overexpression and A20 knockdown.

3.Methods

3.1. Ethical Approval Certificate

The ethics committee of the hospital to Jiaxing Univer-

sity approved this study (No.2017-002). The study adhered

to 1964 Helsinki Declaration guidelines.

3.2. Cell Culture and Treatment

LX-2 cells were obtained from ATCC and grown in

DMEM (Gibco, Cat No.670087), containing 1% pen/strep

and 10% FBS at 37°C in a humidified incubator, 5% CO2. E.

coli O055:B5 LPS (Sigma, Cat No.L6529) was used to stimu-

late the LX-2 cells at 0.1 µg/mL„ according to our previous

research (17), for indicated durations before they were har-

vested and washed at least three times with PBS 1X for anal-

ysis.

3.3. Design and Transfection of Adenovirus

The control adenovirus and A20 overexpression aden-

ovirus (Ad-A20) were designed by Obio Technology (shang-

hai) Co. Ltd. Shanghai, China. The adenovirus was pro-

duced and tittered as described (18). The two adenovirus

preparations were transfected into LX-2 cells for 24 h. The

media were replaced with fresh media, and cells grown

to 80 - 90% confluence. They were then rinsed with PBS

1X and cultured with serum-free DMEM/F12 before stimula-

tion with LPS for indicated durations. Cells were then har-

vested and cryopreserved for later use.

3.4. Design and Transfection of siRNA

A20-siRNA (forward 5’-UAAGAUUGUCCCAUUCAUCTT-3’,

reverse 5’-GAUGAAUGGGACAAUCUUATT-3’) and control

siRNA (forward 5’-UUCUCCGAACGUGUCACGUTT-3’, reverse

5’-ACGUGACACGUUCGGAGAATT -3’) were designed by

KeyGEN BioTechnology Co. Ltd. Nanjing, China. Lipofec-

tamine 3000 (Invitrogen, CA, USA) was used to transfect

control siRNA and A20-siRNA into LX-2 cells in 6-well cell

culture plates. The concentration of control siRNA and

A20-siRNA was 100 nM. The media were replaced with

fresh media after 4 - 6 h of transfection, and cells were

grown to 80-90% confluence. They were then rinsed with

PBS 1X and cultured with serum-free DMEM/F12 before

stimulation with LPS for indicated durations. Cells were

then harvested and cryopreserved for later use.

3.5. Western Blotting

The cell samples were washed with PBS and digested

with 1% Triton X-100 supplemented with protease in-

hibitors, 150 mM NaCl, and 10% glycerol for 30 min at 4°C.

Lysates were cleared by centrifugation at 4°C for 15 min.

The quantity of the extracted proteins was obtained using

bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,

Cat No.23225). Next, 30µg of protein samples was resolved

on SDS-polyacrylamide gel and electrotransferred onto ni-

trocellulose membranes (Pall, Cat No.66485) before prob-

ing with anti A20 (1:1000), ERK (1:1000), phosphorylated

ERK (1:400), JNK (1:1000), and phosphorylated JNK (1:1000)

primary antibodies obtained from Cell Signaling Technol-

ogy. The membranes were incubated with primary anti-

bodies at 4°C overnight.

After washing in TBST three times, the samples were

treated with horseradish peroxidase (HRP)-conjugated

goat anti-rabbit or mouse IgG for 1 hour at room temper-

ature. Blots were visualized by using enhanced chemilu-

minescence (ECL) kit (Millipore, MA, USA) and detected by

the G:BOX chemiXR5 imager. The intensities of the protein

bands were quantified by ImageJ software and calculated

as a ratio of phosphorylated ERK and phosphorylated JNK

to total ERK and JNK. Glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) was used as the loading control.

3.6. RNA Extraction and RT-qPCR Analysis

Cells were treated with Trizol to extract RNA, which was

reverse-transcribed at 37°C for 15 min and at 85°C for 5s in

a 20 µL reaction volume with PrimeScript™ RT reagent Kit

(Takara, Cat No.RR037A) following manufacturer instruc-

tions. Primers are presented in Table 1. For all the qRT-PCR
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experiments, primer efficiency was verified to be greater

than 95%. Quantitative reverse transcription PCR (RT-qPCR)

assay was performed on a StepOnePlus™ Real-Time PCR sys-

tem at 95°C for 5 min, followed by 40 cycles at 95°C for 15s

and at 60°C for 20s in a 20-µL reaction volume, as described

in the manufacturer’s guidelines on a StepOnePlus™ Real-

Time PCR System by Applied Biosystems (Applied Biosys-

tems Inc., California, USA). Relative mRNA levels for the

target genes were obtained by the 2(-∆∆Ct) method with

GAPDH serving as the house-keeping gene.

Table 1. Primer Sequences

Primer Sequence

α-SMA

Forward 5’- ACTGCCTTGGTGTGTGACAA -3’

Reverse 5’- CACCATCACCCCCTGATGTC -3’

Col-I

Forward 5’- GCTCGTGGAAATGATGGTGC -3’

Reverse 5’- ACCCTGGGGACCTTCAGAG -3’

Col-III

Forward 5’- TGCCCTACTGGTCCTCAGAACT -3’

Reverse 5’- CCTGCGAGTCCTCCTACTGCTA -3’

TGF-β

Forward 5’- AGGACCTCGGCTGGAAGTGGAT -3’

Reverse 5’- AGGACCTTGCTGTACTGCGTGT -3’

IL-6

Forward 5’- CCTTCGGTCCAGTTGCCTTCTC -3’

Reverse 5’- AGAGGTGAGTGGCTGTCTGTGT -3’

PDGF

Forward 5’- GCTTGGCTCGTGGAAGAAGGAG -3’

Reverse 5’- TTGGCGTTGGTGCGGTCTATG -3’

GAPDH

Forward 5’- CAAATTCCATGGCACCGTCA -3’

Reverse 5’- AGCATCGCCCCACTTGATTT -3’

3.7. Statistical Analysis

All the data were analyzed using Graphpad Prism 5

(Graphpad, San Diego, CA) and are shown as mean ± SD of

three independent experiments. The mean values of differ-

ent groups were compared using ANOVA or independent

samples t-test. A P-value of less than 0.05 indicates statisti-

cal significance.

4. Results

4.1. A20 Suppresses LPS-induced Fibrosis-Related Molecules and

Inflammatory Response in LX-2 Cells

Using immunohistochemistry, we previously observed

elevated A20 levels in hepatic fibrosis patients (17). Here,

we examined fibrosis-related molecules and inflammatory

cytokine expression in control and A20-siRNA cells. Rela-

tive to controls, the fibrosis-related mRNA levels of α-SMA,

col-I, and col-III were increased in LX-2 cells transfected

with A20-siRNA (Figure 1A). A20-siRNA cells significantly

increased IL-6, TGF-β, and PDGF mRNA levels (Figure 1B),

which activated HSCs (19), suggesting that A20 regulates

these effectors of HSCs activation.

4.2. MAPK/ERK/JNK Pathway Levels Are Elevated in LX-2 Cells in

Response to LPS

We previously found that LX-2 cells mount an inflam-

matory response and upregulate fibrosis indicators in re-

sponse to LPS. Here, we focused on the MAPK/ERK/JNK sig-

naling, which controls various processes in HSCs (20-22).

Western blot analysis revealed elevated phosphorylated

JNK and phosphorylated ERK levels in LX-2 cells relative to

control (Figure 2). In order to explore whether A20 expres-

sion was involved in MAPK/ERK/JNK pathway, we overex-

pressed A20 via Ad-A20 and silenced A20 via A20-siRNA tar-

geting A20 in LX-2 cells to analyze the changes.

4.3. Function of A20 in MAPK/ERK/JNK Pathway

We confirmed that inflammatory cytokines expression

was elevated by silenced A20 in HSCs stimulated by LPS.

However, the underlying mechanism is unknown. Thus,

we focused on MAPK/ERK/JNK signaling pathways that in-

fluence liver fibrogenesis (23-26). Our analysis showed

that relative to controls, A20 overexpression in LX-2 cells

stimulated with LPS for different durations significantly

reduced phosphorylated ERK levels after 5 minutes, and

phosphorylated JNK levels were also lower at 30 minutes

relative to controls (Figure 3A-C). In the pre-experiment

of A20 knockdown, we selected different durations and

found that the band was most obvious at 30 minutes; thus,

30 minutes was chosen instead of the different durations

according to A20 overexpression. A20 knockdown in LX-2

cells promotes phosphorylated JNK levels and phosphory-

lated ERK levels with LPS for 30 minutes (Figure 4A-C), sug-

gesting that A20 modulates inflammation in HSCs via the

MAPK/ERK/JNK pathway.
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Figure 1. A20 knockdown (siRNA) promotes the mRNA expression of fibrotic markers and LPS-induced inflammatory response in LX-2 cells. A, The mRNA expression of α-SMA,
col-I, and col-III in LX-2 cells transfected with A20-siRNA and control exposed to various times of LPS. B, mRNA levels of IL-6, TGF-β, and PDGF in LX-2 cells transfected with
A20-siRNA and control exposed to various times of LPS. GAPDH was used as the reference gene. * P < 0.05 and ** P < 0.01 relative to control groups.

5. Discussion

Here, we assessed the mechanism through which A20

mediates its anti-inflammation effects in LX-2 cells. The ex-

pression level of A20 is elevated in hepatic fibrosis tissue

(17). Relative to controls, the fibrosis-related mRNA level

of α-SMA, col-I, and col-III were increased in A20-siRNA LX-

2 cells. Meanwhile, A20-siRNA cells significantly increased

IL-6, TGF-β, and PDGF mRNA levels. Relative to controls,

stimulating A20 overexpressing LX-2 cells with LPS for 5

and 30 minutes significantly reduced the levels of phos-

phorylated ERK and JNK, respectively. A20 knockdown in

LX-2 cells promoted phosphorylated ERK and JNK levels

with LPS for 30 minutes.

A20 influences various processes in the liver, includ-

ing hepatic ischemia/reperfusion injury, liver protection,

hepatocyte growth, hepatic inflammation, and apoptosis

(10, 27, 28). Previous studies showed that A20 promotes

hepatocytes proliferation and suppresses apoptosis in ALF

rats (29). Liver A20 expression enhanced BALB/c mouse

survival after hepatectomy (28). In A20 knockout mice,

excessive liver inflammation and necrosis led to compen-

satory physiologic A20 upregulation in hepatocytes (30).

Additionally, A20 confers proliferative advantage in hepa-

tocytes and is a potential therapeutic target against liver

injury after ischemia reperfusion (13). Thus, A20 has pro-

proliferative, anti-inflammatory, and antiapoptotic effects

in hepatocytes (27). We previously found that A20 may pro-

tect against liver fibrosis by downregulating inflammatory

mediators in HSCs (17). A better understanding of A20’s

role in HSCs may uncover novel therapeutic approaches for

reducing liver fibrosis.

Hepatic stellate cells play a central role in the devel-

opment of liver fibrosis via promoting ECM formation in

hepatic tissues. Chronic liver inflammation alters HSCs

from a quiescent state to activated state, myofibroblasts,

and fibroblasts, via stimulation by cytokines, including

IL-6, PDGF, and TGF-β (31, 32). IL-6 is a well-known pro-

inflammatory cytokine, which can lead to liver injury and

the occurrence of fibrosis (33). In the development of liver

fibrosis, PDGF acts as a potent mitogen or activator of HSCs

(34). TGF-β is one of the impotent growth factors associ-

ated with fibrosis progression in the liver (35). These cy-

tokines induce the activation and proliferations of HSCs,

which consequently result in liver fibrosis or cirrhosis (31-

35). In our research, A20-siRNA cells significantly increased

IL-6, TGF-β, and PDGF mRNA levels. Therefore, it is both in-

teresting and important to know how A20 is linked to the

above proinflammatory and profibrotic cytokines.

Previous studies (36) have shown that MAPK/ERK/JNK

signaling controls various processes in HSCs, including

cell growth, differentiation, survival, and apoptosis. ERK

signaling has been shown to enhance liver fibrogene-

sis (23). A20 has been reported to downregulate TNFα-

induced chemokine secretion in human colorectal can-
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Figure 2. MAPK/ERK/JNK pathway levels are elevated in LX-2 cells. A, Western blot analysis of MAPK/ERK/JNK levels in LX-2 cells in response to LPS for 30 min. GAPDH served as
the gene for loading control. B, Gray analysis of relative fold changes of protein phosphorylated JNK (p-JNK)/JNK and phosphorylated ERK (p-ERK)/ERK. P-JNK, JNK, p-ERK, and
ERK represented as the sum of two bands. * P < 0.05 relative to control groups.

cer cells by suppressing ERK signaling (37). Moreover, in-

hibiting ERK and JNK phosphorylation in the MAPK path-

way suppresses liver fibrosis (38). Some studies have

found that A20 overexpression suppresses ERK and JNK

activation, which are important for chemokine produc-

tion (37, 39, 40). These findings suggest that A20 nega-

tively modulates chemokine production by suppressing

MAPK/ERK/JNK signaling, and A20 has potential as a ther-

apeutic target against liver fibrosis. However, the possi-

bility that A20 may become physiologically upregulated

in HSCs in response to inflammation during liver fibrosis

needs further investigation.

A20 protects HSCs against inflammation by inhibiting

MAPK signaling, highlighting this pathway as a potential

target for liver fibrosis treatment.
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