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Abstract

Background: Non-alcoholic steatohepatitis (NASH) is a risk factor for hepatocellular carcinoma, but the understanding of the reg-
ulatory mechanisms driving NASH is not comprehensive.
Objectives: We aimed to identify the potential markers of NASH and explore their relationship with immune cell populations.
Methods: Five gene expression datasets for NASH were downloaded from the Gene Expression Omnibus and European Bioinfor-
matics Institute Array Express databases. Differentially expressed genes (DEGs) between NASH and controls were screened. Gene
Ontology-Biological Process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed
for functional enrichment analysis of DEGs. Among the candidate genes selected from the protein-protein interaction (PPI) net-
work and module analysis, DEG signatures were further identified using least absolute shrinkage and selection operator regression
analysis. The Spearman correlation coefficient was calculated to assess the correlation between DEG signatures and immune cell
abundance based on the CIBERSORT algorithm.
Results: We screened 403 upregulated, and 158 downregulated DEGs for NASH, and they were mainly enriched in GO-BP, including
the inflammatory response, innate immune response, signal transduction, and KEGG pathways, such as the pathways involved in
cancer (e.g., the PI3K-Akt signaling pathway), and focal adhesion. We then screened 73 candidate genes from the PPI network and
module analysis and finally identified 17 DEG signatures. By evaluating their relationship with immune cell populations, 12 DEG
signatures were found to correlate with activated dendritic cells, resting dendritic cells, M2 macrophages, monocytes, neutrophils,
and resting memory CD4 T cells, which were significantly different between the NASH and control tissues.
Conclusions: We identified a 17-DEG-signature as a candidate biomarker for NASH and analyzed its relationship with immune infil-
tration in NASH.
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1. Background

Non-alcoholic steatohepatitis (NASH), which develops
from steatosis, is characterized by lipid metabolic disor-
der and chronic inflammation, eventually leading to liver
cirrhosis and hepatocellular carcinoma (HCC) if left un-
treated (1). As a progressive form of non-alcoholic fatty
liver disease (NAFLD), NASH has been predicted to become
the leading cause of end-stage liver disease requiring liver
transplantation (2). The “two-hit” theory is widely used to
explain the pathogenesis of NASH. The first hit is hepatic
steatosis resulting from the accumulation of triglycerides,
and the second hit is the oxidative stress response to liver
damage, inflammation, and fibrosis (3, 4). According to
global statistics, approximately 25% of the general popu-

lation is suffering from NAFLD, and the estimated preva-
lence of NASH among NAFLD patients is approximately 60%
(5, 6). Although patients with simple steatosis (SS) have
an optimistic survival and prognosis, the overall morbid-
ity and mortality rates of patients with NASH increase an-
nually (7). To date, liver biopsy remains the gold standard
for the diagnosis of NASH, but due to the high incidence of
NASH worldwide, liver biopsy is not suitable for large-scale
screening (8). Therefore, there is an urgent need to identify
novel biomarkers to distinguish NASH from SS and healthy
conditions and to better define the severity of liver injury
and inflammation.

The development of NASH stems from an inflamma-
tory process that is driven by multiple immune cells.
Studies have reported that in the liver, a large number
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of innate and adaptive immune cells, including lympho-
cytes, macrophages, neutrophils, and dendritic cells, are
involved in the development of chronic inflammation
(9). Non-parenchymal hepatic cells, including liver sinu-
soidal endothelial cells and hepatic stellate cells, have been
shown to participate in NASH progression (10). Damaged
liver cells release signaling molecules, including injury-
associated molecular patterns and pathogen-associated
molecular patterns, thereby arousing an immune re-
sponse (11). Moreover, these liver immune-associated cells
can sense excess metabolites and bacterial products and
transduce these signals to activate immune responses in
NASH (12). Although the activation of the immune system
and the recruitment of pro-inflammatory factors in NASH
are widely recognized, the signaling and molecular regu-
latory mechanisms that facilitate this process remain un-
clear.

Therefore, this study aimed to identify the character-
istic genes of NASH and explore the relationship between
them and immune cells. To obtain optimized feature
genes, we screened differentially expressed genes (DEGs)
between NASH samples and healthy controls, followed by
the function and pathway enrichment analysis of these
DEGs. We then attempted to screen candidate genes from
protein-protein interaction (PPI) network-based module
analysis and performed least absolute shrinkage and selec-
tion operator (LASSO) regression to identify the gene signa-
tures of NASH.

2. Objectives

In this study, we identified several predictive biomark-
ers for NASH diagnosis, as well as their potential regulatory
mechanisms involved in immune response activation and
NASH development.

3. Methods

3.1. Data Acquisition and Processing

Four microarray datasets, including GSE89632 (con-
taining 20 SS, 19 NASH, and 24 normal liver biopsy tis-
sue samples detected from Illumina HumanHT-12 WG-
DASL v4.0 R2 expression BeadChip), GSE63067 (contain-
ing nine NASH and seven normal liver biopsy tissue sam-
ples detected from Affymetrix Human Genome U133 Plus
2.0 Array), GSE107231 (containing five NAFLD and five nor-
mal liver biopsy tissue samples detected from Agilent-
067406 Human CBC lncRNA + mRNA microarray v4.0),
and GSE72756 (containing five NAFLD and five normal liver
biopsy tissue samples detected from Agilent-045997 Ar-
raystar human lncRNA microarray v3), were downloaded

from Gene Expression Omnibus (GEO) (13). In addition,
the E-MEXP-3291 containing 10 SS samples, 16 NASH sam-
ples, and 19 healthy controls, detected from Affymetrix
GeneChip Human Gene 1.0 ST Array, was obtained from
European Bioinformatics Institute (EBI) Array Express (14).
The expression data of the samples from these five datasets
were acquired accordingly, of which GSE89632 and E-MEXP-
3291 were used for analysis while GSE63067, GSE107231, and
GSE72756 were employed for validation. Sample employ-
ment and study procedures have been shown in Figure 1.
The probe was transformed into a gene symbol according
to the platform annotation information, and when multi-
ple probes corresponded to one gene, the mean value was
adopted.

3.2. Screening for DEGs in NASH

The limma package (version 3.34.7) in R 3.6.1 (15) was ap-
plied to select DEGs between NASH samples and healthy
controls in the both GSE89632 and E-MEXP-3291 datasets.
Batch effects on the expression data rooted into two de-
tection platforms and were removed by the sva package
(version 3.38.0) (16) and visualized by principal component
analysis (PCA) diagrams. An expression heatmap was gen-
erated using the pheatmap package (version 1.0.12). Inter-
secting DEGs from the two databases were selected for fur-
ther analysis.

3.3. Enrichment Analysis of DEGs

The online tool of DAVID (version 6.8) (17, 18) was used
for the gene ontology-biological process (GO-BP) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment of DEGs. Thresholds were set at P < 0.05 and gene
count ≥ 2.

3.4. PPI Network Establishment and Module Analysis

In this section, STRING version 11.0 (19) was used to
establish functional interactions between proteins with a
threshold of combined score = 0.70 (high confidence), and
then the established network was visualized through Cy-
toscape version 3.6.1 (20). Moreover, the CytoNCA plug-in
version 2.1.6 (21) was used to calculate the degree centrality,
betweenness centrality, and closeness centrality of nodes
in the network. The hub proteins involved in the PPI net-
work were obtained by ranking the topological properties
of each node.

MCODE plug-in version 1.5.1 (22) was used to identify
module genes in the PPI network based on the following
settings: degree cut-off = 2, node score cut-off = 0.2, K-core =
2, and max depth = 100. Then the clusterProfiler package in
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Figure 1. The flowchart of the study. NASH, non-alcoholic steatohepatitis; DEGs, differentially expressed genes; FDR, false discovery rate; FC, fold change; PPI, protein-protein
interaction; LASSO, least absolute shrinkage and selection operator.

R (version 3.8.1) (23) was used to conduct KEGG pathway en-
richment analysis for the genes in each module and iden-
tify key module genes according to the significance of en-
richment results at the threshold of P < 0.05.

3.5. Selection and Validation of Core Genes

To identify hub genes in the PPI network and key mod-
ule genes as candidate genes, LASSO regression analysis
was performed using Lars package in R 3.6.1 (version 1.2)
for the screening of DEG signatures. Thereafter, the ex-
pression of DEG signatures was validated on the GSE63067,
GSE107231, and GSE72756 datasets.

3.6. Identification of Immune Infiltration-related DEG Signa-
tures

The CIBERSORT algorithm was used to evaluate the
abundance of immune cell populations in all samples, and
then differences in the proportion of individual immune
cells were compared between NASH and healthy controls.

The Cor function in R 3.6.1 was used to compute the Spear-
man correlation coefficient between DEG signatures and
the abundance of immune cells. Finally, DEG signatures
with an adjusted P of < 0.05 and |Spearman R| > 0.6 were
used to generate a scatter plot.

3.7. Statistical Analysis

Gene expression comparison between NASH and con-
trol samples was performed using the limma package with
a false discovery rate (FDR) of < 0.05 and |log2 fold change
(FC)| > 0.263, as thresholds. Also, LASSO regression analy-
sis was performed to screen DEG signatures. The Wilcoxon
test was used to compare the difference in immune cell
infiltration between NASH and normal samples, and the
Spearman correlation coefficient was calculated to assess
the relationship between DEG signatures and immune cell
infiltration. Statistical significance was set at P < 0.05, and
P values in module and correlation analyses were adjusted
using the Benjamini & Hochberg (BH) method.
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4. Results

4.1. Comparison of DEGs Between NASH and Healthy Control
Samples

According to expression profile data and the thresh-
old set, we obtained 3194 upregulated and 2444 downreg-
ulated genes at GSE89632 and 2703 upregulated and 2039
downregulated genes at E-MEXP-3291 comparing NASH and
healthy control samples considering FDR < 0.05 and |log2

(FC)| > 0.263. By intersecting the DEGs obtained from the
two datasets, 403 upregulated genes (Figure 2A) and 158
downregulated genes (Figure 2B) were further screened.
We further removed the batch effect of samples from the
GSE89632 and E-MEXP-3291 datasets using the sva package.
Appendix 1 shows PCA diagrams before and after the re-
moval of the batch effect in the two datasets. The results
suggested that the sample distribution of the two datasets
was not significantly different after the removal of the
batch effect. Thereafter, expression data were extracted to
generate a sample clustering heatmap, as shown in Fig-
ure 2C. The diagram illustrates that the expression levels of
DEGs were significantly different between NASH and nor-
mal samples, and DEGs were identified based on their re-
spective expression profiles.

4.2. Functional and Pathway Enrichment Analysis on DEGs

In this regard, GO-BP functional analysis and KEGG
pathway enrichment analysis were performed based on P
< 0.05 and gene count≥ 2, leading to the emergence of 69
GO-BP and 36 KEGG pathways for upregulated DEGs and 22
GO-BP and three KEGG pathways for downregulated DEGs.
According to the ranking of P values, the top 20 pathways
of GO-BP and KEGG were selected (Figure 3A and 3B, respec-
tively). Enrichment results showed that downregulated
DEGs were more likely to participate in the biological pro-
cesses involved in the inflammatory and innate immune
responses whereas upregulated DEGs were more engaged
with signal transduction, positive regulation of GTPase ac-
tivity, and cell adhesion. Of the enriched KEGG pathways,
upregulated DEGs were more engaged in the pathways in-
volved in cancer, the PI3K-Akt signaling pathway, and focal
adhesion while downregulated DEGs were most likely to
participate in metabolic pathways.

4.3. Analysis Using Constructed PPI Network

We further established a PPI network based on inter-
secting DEGs and obtained 555 pairs of interactions con-
taining 246 genes (Figure 4A). Then 12 DEGs (SYK, PIK3CG,
PLCG1, SOS1, CASP3, CD2, CDH1, PAK1, CCL5, DDX58, CD3G, and
STAT3), which ranked as the top 20 based on the topologi-
cal properties of degree, betweenness, and closeness, were
identified as hub genes in the PPI network (Figure 4B).

We also performed module mining analysis on the
PPI network and identified 17 submodules and their cor-
responding genes (Appendix 2). Accordingly, KEGG path-
way analysis revealed that only the genes in 11 submodules
were significantly enriched in KEGG pathways, and these
enriched pathways varied in each submodule. The results
of the top five pathways with BH-adjusted P values in each
submodule have been displayed in Figure 4C.

4.4. Screening and Validation of DEG Signatures

Twelve hub genes in the PPI network were included
in the gene set from the 11 submodules identified. There-
fore, the expression data of candidate genes from these
submodules were extracted to recognize optimized DEG
combinations. After LASSO regression analysis, 17 DEG
signatures were identified (Figure 5A), and their expres-
sions were validated in the normal, SS, and NASH sam-
ples from the E-MEXP-3291 (Figure 5B) and GSE89632 (Fig-
ure 5C) datasets. The results suggested that these gene
signatures were differentially expressed between healthy
and NASH samples in the two datasets, which was statisti-
cally significant. In addition, we found that in the E-MEXP-
3291 dataset, except for VAMP3, ACVR2B, ACTN1, TNFSF10, and
SOS1, the other 12 gene signatures were differentially ex-
pressed between SS and NASH samples while TNFSF10 and
CASP1 were differentially expressed between the normal
and SS groups. In the GSE89632 dataset, CXCL10, CXCL9,
CDH1, CASP1, MRAS, and SOS1 were differentially expressed
between SS and NASH samples (P < 0.05) while 12 of the
17-DEG signatures identified were differentially expressed
between the normal and SS groups (P < 0.05). The ex-
pression of the 17-gene-signature varied progressively from
normal to SS and then to NASH in these two datasets. Sub-
sequently, the expression data of the 17-DEG-signature were
extracted from the GSE63067, GSE107231, and GSE72756
datasets for validation (Appendix 3). The results suggested
that the expression of CASP1 was significantly different be-
tween NASH and control samples in the GSE63067 dataset
while MRAS was significantly upregulated in NASH com-
pared with control in the GSE107231 dataset. Finally, in the
GSE72756 dataset, the expression levels of ACVR2B, CXCL9,
and CXCL10 were significantly different between NASH and
healthy control samples.

4.5. Immune Infiltration Analysis of DEG Signatures

We further evaluated the abundance of 22 types of
tissue-infiltrating immune cells in the combined dataset
(Figure 6A). We finally filtered eight NASH samples and
nine healthy controls with a standard of P < 0.05 for the
following analysis. Furthermore, the Wilcoxon test was
performed to compare the abundance of each immune
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Figure 2. Screening of differentially expressed genes (DEGs) between non-alcoholic steatohepatitis and normal samples in the E-MEXP-3291 and GSE89632 datasets. A-B. Venn
diagrams showing commonly upregulated (A) and downregulated (B) genes from the GSE89632 and E-MEXP-3291 datasets. The DEGs were selected with FRD < 0.05 and |log2

fold change (FC)| > 0.263 as thresholds. C. The heatmap shows the differences in the expression of DEGs between NASH and normal samples from the GSE89632 and E-MEXP-3291
datasets.

cell type between the two groups. Overall, seven types
of immune cells showed significant differences between
the two groups (Figure 6B), showing higher numbers of
resting memory CD4 T cells, M2 macrophages, and resting
dendritic cells while lower numbers of activated NK cells,
monocytes, activated dendritic cells, and neutrophils in
NASH than in normal tissues. Next, we analyzed the corre-
lation between the frequency of these seven immune cell
types and the 17-DEG-signature and identified 28 pairs of
relationships between these cells and genes at adjusted P <
0.05 and |Spearman R| > 0.6 (Table 1). The results suggested
that a total of 12 DEG signatures correlated with six types of
immune cells, including activated dendritic cells, resting
dendritic cells, M2 macrophages, monocytes, neutrophils,
and resting memory CD4 T cells. Considering relationships
between DEG signatures and immune cells, activated den-

dritic cells positively correlated with AVPR1A expression;
M2 macrophages positively correlated with VAMP3 expres-
sion; neutrophils positively correlated with SMAD1, AVPR1A,
CXCL2, and CXCR1 expression, and finally, resting memory
CD4 T cells were positively associated with CXCL10, SYK,
CDH1, and FGFR2 expression. All other relationships were
negative correlations.

5. Discussion

The onset of NASH is usually accompanied by lipid ac-
cumulation, liver cell damage, immune system dysfunc-
tion, and fibrosis, which may eventually lead to HCC (24).
Therefore, the identification of biomarkers for the early di-
agnosis of NASH is of great significance in controlling the
inflammatory response and the prevention of disease de-
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Figure 3. Gene ontology-biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of differentially expressed genes (DEGs)
between normal and NASH samples. The top 20 GO-BP (A) and KEGG pathways (B) for both upregulated and downregulated DEGs ranked by P values. Significantly enriched
terms were selected based on the criteria of P < 0.05 and gene count ≥ 2. The x-axis indicates the gene count while the y-axis indicates the terms of the GO-BP and KEGG
pathways with a significant correlation. The triangles and circles in B represent upregulated and downregulated DEGs, respectively.

terioration in patients with NASH. To explore the feature
genes of NASH, we first identified 403 upregulated and 158
downregulated DEGs based on the analysis of 35 NASH sam-
ples and 43 healthy controls. Furthermore, we screened
candidate genes by the PPI network-based module and
LASSO regression analyses, resulting in the identification
of 17 DEG signatures, including CXCL2, CXCL10, CXCR1, CXCL9,
VAMP3, SMAD1, ACVR2B, CDH1, SYK, AVPR1A, ACTN1, GAS6, TN-
FSF10, CASP1, MRAS, FGFR2, and SOS1. Finally, by evaluat-
ing the relationship between the 17-DEG-signature and im-
mune cell abundance in NASH and control samples, 12 DEG
signatures were found to significantly correlate with six
types of immune cells, including M2 macrophages and
neutrophils. These results provide novel insights into the
immune-regulatory mechanisms of NASH.

By performing enrichment analysis, we found that 561

DEGs in NASH were mainly enriched in the inflammatory
response, innate immune response, signal transduction,
cancer-related pathways, PI3K-Akt signaling pathway, and
focal adhesion. Hepatic steatosis could trigger the release
of stress signals from hepatocytes, thereby activating in-
flammatory pathways. On the other hand, the pattern
recognition receptors expressed on the surface of cells can
sense cellular damage and pathogen invasion and acti-
vate the innate immune response in NASH (25). Secretome
gene analysis revealed a highly linked network of intra-
hepatic signals in NASH, and the signal transduction trig-
gered by TGF-β-Smad3 was also shown to be involved in
diet-induced NASH in mice (26, 27). Liu et al. pointed out
that the inhibition of PI3K/AKT/mTOR pathways could en-
hance the autophagic flux of macrophages and thus in-
hibit the inflammatory response in mice with NASH (28).
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Figure 4. Construction and module mining analysis of the protein-protein interaction (PPI) network. A, Establishment of a PPI network based on intersected differentially
expressed genes (DEGs). This PPI network contains 246 genes (upregulated DEGs are shown in orange, and downregulated DEGs are shown in blue) and 555 pairs of interactions.
B, The Venn diagram shows the top 20 genes ranked by gene count in terms of the topological properties of degree, betweenness, and closeness, and the intersected 12 DEGs
were identified as hub genes in the PPI network. C, The heatmap shows the top five KEGG pathways significantly enriched in DEGs, ranked by P value in each submodule.

The activation of IRS2/PI3K/Akt signal transduction could
also increase hepatic glycogen storage and improve in-
sulin resistance while the dysregulation of the insulin-
related PI3K/AKT-p70S6K pathway was involved in fibrosis
development in NASH (29, 30). Additionally, Dattaroy et
al. observed changes in the expression of focal adhesion
proteins upon SsnB administration in animal models of
liver fibrosis (31). These findings explain the possible in-
volvement of enriched pathways and biological processes
in disease regulation, thus further demonstrating that the

obtained DEGs have certain pathogenic characteristics and
are involved in NASH-related inflammatory and innate im-
mune responses.

In this study, we highlighted the significance of the
17-DEG-signature in the development and progression of
NASH and verified their expression by internal and exter-
nal validation. By comparing the differences in the expres-
sion of these DEGs between normal, SS, and NASH samples,
we found that CASP1 was significantly upregulated in the
SS and NASH groups. Dixon et al. showed that caspase-
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Figure 5. Screening of differentially expressed gene (DEG) signatures using least absolute shrinkage and selection operator (LASSO) regression analysis and the validation of
their expression in normal, simple steatosis (SS), and non-alcoholic steatohepatitis (NASH) samples from the E-MEXP-3291 and GSE89632 datasets. A. LASSO regression analysis
was used to identify 17 DEG signatures as the optimized gene set. B. The expression differences of 17 DEG signatures between normal, SS, and NASH samples from the E-MEXP-3291
dataset. C. The expression differences of 17 DEG signatures between the normal, SS, and NASH groups in the GSE89632 dataset.

1 (CASP1)-deficient mice might be less prone to high fat-
induced SS and inflammation associated with NASH (32).
This finding explains our results and further suggests that
CASP1 is a risk factor for SS development and then its pro-
gression to NASH. Additionally, we identified several mem-
bers of the CXC chemokine family as potential biomarkers
for NASH, including CXCL2, CXCL9, CXCL10, and CXCR1. The
role of the CXC chemokine family in NASH has been widely
studied, and the hepatic infiltration of neutrophils and
upregulation of CXCL1 are known to be involved in NASH
(33). Another member of this family, CXCR3, plays an im-
portant role in the development of NASH by inducing cy-
tokine production and macrophage infiltration (34). In ad-
dition, Semba et al. found that hepatocytes and sinusoidal
endothelium, which express CXCL9, were confined to ar-

eas of inflammatory cell infiltration in mice with NASH
(35). Our study further found that the expression of CXCL9
was significantly elevated during SS progression to NASH,
suggesting that the overexpression of CXCL9 may correlate
with the activation of inflammatory responses in this con-
dition. Regarding CXCL10, there was an increasing trend in
the expression of this gene from normal to SS to NASH. A re-
lated study confirmed our results and reported that CXCL10
was upregulated in NASH, and that the level of circulating
CXCL10 was associated with lobular inflammation, suggest-
ing a key role for CXCL10 as an inflammatory mediator of
NASH (36). These data illustrated that the DEG signatures
identified here could be important therapeutic targets for
NASH, but their integrative effects on the disease patho-
genesis remain to be explored.
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Figure 6. Immune cell infiltration analysis in normal and non-alcoholic steatohepatitis (NASH) samples in the combined dataset. A. Histograms show the infiltration abun-
dance of 22 types of immune cells in eight NASH samples and nine normal controls from the combined dataset (E-MEXP-3291 and GSE89632). B. The violin diagram shows the
differences in the abundance of 22 types of immune cells between the NASH and control groups. Blue and red bars indicate normal and NASH samples, respectively.

We found that NASH and normal samples had sig-
nificant differences in the abundance of immune cells.
Among these cells, neutrophils showed the greatest differ-
ence between the two groups, and NASH samples showed
enhanced infiltration of neutrophils. van der Windt et
al. found early neutrophilic infiltration, macrophage in-
flux, and production of inflammatory cytokines in mice

with high fat diet-induced NASH (37). Wu et al. also pro-
posed that enhanced neutrophil infiltration was a major
histological feature of NASH (38). Furthermore, the over-
expression of CXCL1 in the liver may drive NASH progres-
sion through facilitating the activation of stress kinases
and neutrophil infiltration (39). In addition to neutrophil-
related DEGs, we also identified 12 DEG signatures related

Hepat Mon. 2021; 21(7):e116366. 9
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Table 1. Significant Correlations Between the 17-DEG-Signatures and Infiltrations by Immune Cells

Immune Cell Gene R a P-Value Q-Value b

Activated dendritic cells SYK -0.697731584 0.001844931 0.01833562

Activated dendritic cells CXCL10 -0.684242924 0.002449187 0.01943022

Activated dendritic cells VAMP3 -0.659718088 0.003958514 0.024026602

Activated dendritic cells MRAS -0.619252109 0.00802977 0.039814276

Activated dendritic cells AVPR1A 0.70141031 0.00170334 0.01833562

Resting dendritic cells CXCR1 -0.760303501 0.000396191 0.009438255

Resting dendritic cells CXCL2 -0.666025867 0.003512852 0.023302488

M2 macrophages ACVR2B -0.617647059 0.009698737 0.046165989

M2 macrophages CXCL2 -0.607843137 0.011192078 0.046651756

M2 macrophages VAMP3 0.644607843 0.006395802 0.034595476

Monocytes FGFR2 -0.637254902 0.007189792 0.037199359

Monocytes SOS1 -0.607843137 0.011192078 0.046651756

Neutrophils FGFR2 -0.760269916 0.000396565 0.009438255

Neutrophils CDH1 -0.727161387 0.000941323 0.016002484

Neutrophils SYK -0.703862793 0.001613999 0.01833562

Neutrophils VAMP3 -0.669528023 0.003283597 0.023302488

Neutrophils CXCL10 -0.665849297 0.003524746 0.023302488

Neutrophils MRAS -0.602084724 0.010545631 0.046651756

Neutrophils SMAD1 0.690374133 0.002157132 0.01833562

Neutrophils AVPR1A 0.692826617 0.002048599 0.01833562

Neutrophils CXCL2 0.7627224 0.000369997 0.009438255

Neutrophils CXCR1 0.902513965 7.20E-07 8.57E-05

Resting memory CD4 T cells AVPR1A -0.710784314 0.001926552 0.01833562

Resting memory CD4 T cells CXCR1 -0.669117647 0.004239989 0.024026602

Resting memory CD4 T cells CXCL10 0.669117647 0.004239989 0.024026602

Resting memory CD4 T cells SYK 0.713235294 0.001831279 0.01833562

Resting memory CD4 T cells CDH1 0.75245098 0.00074371 0.014750255

Resting memory CD4 T cells FGFR2 0.801470588 0.000158696 0.009438255

Abbreviation: DEG, differentially expressed gene.
a R stands for Spearman correlation coefficient.
b Q-value represents P-value adjusted by the Benjamini & Hochberg method, and Q < 0.05 indicates statistical significance.

to dendritic cells, M2 macrophages, monocytes, and mem-
ory CD4 T cells in NASH. Many of these relationships be-
tween DEG signatures and immune cells were initially
found to be involved in the development of NASH. Related
studies have reported that the loss of p38α expression
in macrophages can ameliorate steatohepatitis in mice
through reducing the secretion of proinflammatory cy-
tokines, including TNF-α, CXCL10, and IL-6 (40). More-
over, the immune infiltration of macrophages plays a cru-
cial role in the CXCL10-mediated inflammatory response in
mice with NASH (41). In this study, we found an increased

expression of CXCL10, as well as decreased infiltration of
M2 macrophages in NASH samples. Combined with the
above findings, we hypothesized that CXCL10 may activate
the inflammatory response by regulating macrophage po-
larization. However, the current understanding of cell-
gene interactions that may stimulate the NASH-related in-
flammatory response is limited, and our study provided a
systematic network of interactive relations as the theoret-
ical basis for future research.

In the current study; however, the expression of these
17 gene signatures was not validated in the tissues of pa-
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tients with NASH due to the lack of clinical biopsy samples.
Furthermore, the lack of the experimental verification of
the relationships between DEG signatures and immune
cell populations was another limitation of this study. Addi-
tionally, the sample size in this study was not large enough
to fully explain the key roles of these gene signatures in the
development of NASH. Therefore, in future studies, we will
expand the sample size to validate the significance of these
17 DEG signatures in NASH and further investigate their reg-
ulatory mechanisms in triggering immune responses in
NASH.

5.1. Conclusions
We identified 561 DEGs in NASH tissue samples and ex-

plored their biological functions and related pathways in-
volved in the development of NASH. The 17-DEG-signature
was further identified from candidate genes in the PPI net-
work and related submodules. Finally, 12 DEG signatures
were found to be associated with activated dendritic cells,
resting dendritic cells, M2 macrophages, monocytes, neu-
trophils, and resting memory CD4 T cells and probably
govern the increase of these immune cells in NASH sam-
ples compared to healthy controls. Our results identified
valuable biomarkers in NASH, which can role as potential
therapeutic targets regulating the mechanisms underly-
ing NASH-related inflammatory responses.
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