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Abstract

Background: This study aimed to identify genes related to the immune score of hepatoblastoma, examine the characteristics of
the immune microenvironment of hepatoblastoma, and construct a risk scoring system for predicting the prognosis of hepatoblas-
toma.
Methods: Through using the gene chip data of patients with hepatoblastoma with survival data in the ArrayExpress and GEO
databases, the immune score of hepatoblastoma was calculated by the ESITIMATE algorithm, and the prognostic value of immune
score in patients with hepatoblastoma was studied by the survival analysis. Genes related to the immune score were identified by the
WGCNA algorithm. According to these genes, patients with hepatoblastoma were clustered unsupervised. Finally, the risk scoring
system was constructed according to the immune score-related genes.
Results: The immune score calculated by the ESTIMATE algorithm had a good prognostic value in patients with hepatoblastoma.
Patients with high immune scores had better OS than those with low immune scores (P < 0.001). A total of 146 immune score-related
genes were identified by WGCNA analysis, and univariate COX regression analysis indicated that 59 of the genes had prognostic
value. According to the unsupervised clustering results of the 146 immune score-related genes, patients with hepatoblastoma could
be divided into two subtypes with different prognoses, namely molecular subtype 1 and subtype 2, with molecular subtype 1 having
a better prognosis. The immunocyte infiltration analysis results showed that the difference between the two subtypes was mainly
in activated CD4 T cells, activated dendritic cells, CD56 bright natural killer cells, the macrophage, and regulatory T cells. According
to the immune score-related genes, a risk scoring system was constructed based on a five-gene signature. After the cut-off value
was determined, patients with hepatoblastoma were divided into a high-risk group and a low-risk group. The prognosis of the two
groups was different.
Conclusions: The immune score has a good prognostic value in patients with hepatoblastoma. Based on the different expression
patterns of immune score-related genes, hepatoblastoma can be divided into two different prognostic molecular subtypes, showing
different immunocyte infiltration patterns. The established risk scoring system based on a five-gene signature has a good predictive
value in patients with hepatoblastoma.
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1. Background

Hepatoblastoma, which originates from hepatic pri-
mordial embryonic cells (1-3), is the most common pri-
mary epithelial malignant tumor in children. The inci-
dence rate of hepatoblastoma has been increasing in the
past 30 years (4), and the treatment of hepatoblastoma in-
cludes chemotherapy, surgical resection, and liver trans-

plantation (5-7). At present, surgical resection is still the
first-line treatment for the initial diagnosis of hepatoblas-
toma. With the development of these treatments, the cu-
rative effect of hepatoblastoma has made great progress,
and the survival outcome has also been greatly improved
(8, 9). In the past ten years, immunotherapy has made
a great breakthrough in cancer treatment, showing good
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therapeutic effect in various malignant tumors, especially
in melanoma, lung cancer, urothelial carcinoma, head and
neck squamous cell carcinoma, renal cell carcinoma, and
Hodgkin’s lymphoma (10, 11). However, there is still a great
need to investigate hepatoblastoma, and a clear under-
standing of the tumor immune microenvironment will
contribute to the application of this treatment in hepato-
blastoma.

Tumor microenvironment (TME) is mainly composed
of stromal cells and immune cells. An increasing num-
ber of studies have shown that TME plays a crucial role
in the progression and treatment of many cancers (12-14).
The immune cells include cytotoxic T cells, helper T cells,
dendritic cells (DCS), tumor-associated macrophages, and
mesenchymal stem cells, and the composition of these
cells determines the prognosis of a variety of tumors. Sev-
eral studies based on the gene expression profile data of
the immune-related score have predicted the prognosis
of the tumor and have been applied in a variety of tu-
mors (15-18). Therefore, TME and immune-related genes
may play an essential role in tumor therapy. Recently, algo-
rithms based on gene expression profiles have made great
progress, which can evaluate the composition of various
cellular components in TME (19-21).

In this study, we first determined the immune score
of hepatoblastoma by the ESTIMATE algorithm (21) and
identified immune-related genes by WGCNA (22). We
performed consensus cluster analysis on hepatoblastoma
based on the expression characteristics of these immune
genes and analyzed the immunocyte infiltration by the ss-
GSEA algorithm (23). Finally, we constructed a prognostic
risk scoring system based on these immune score-related
genes, which could be used to evaluate the prognosis of pa-
tients with hepatoblastoma.

2. Methods

2.1. Hepatoblastoma Data Sets and Preprocessing

We searched the GEO and ArrayExpress databases to
find the hepatoblastoma data set with survival informa-
tion published in the public database. Finally, a total of
two data sets, ie, GSE75271 and E-MEXP-1851, were retrieved
(24, 25). The analysis platform used for both groups was
the expression chip of Affymetrix. The former was the
hgu133plus2 chip, containing five normal tissue chip ex-
pression profiles and 50 tumor tissue chip expression pro-
files, and the latter was the hgu133a chip, containing four
normal tissue chip expression profiles and 24 tumor tissue
chip expression profiles. After downloading the original

chip data, the RMA algorithm in the R package AFFY was
used for background correction, data standardization, and
other processing to obtain the expression matrix. We con-
verted the probe ID into a gene symbol and then combined
the data according to the gene symbol shared by the two
expression matrices to obtain an expression matrix con-
taining 83 samples and 12402 genes. Further, the combat
function of the sva package was used to correct batch effect
and remove normal control samples, and a total of 68 sam-
ples with survival information were used for subsequent
analysis.

2.2. Inference of Sample Immune Score

The ESTIMATE algorithm is a tool for predicting tumor
purity. It uses gene expression data to predict the infil-
tration degree of stromal and immune cells in tumor tis-
sue. It obtains three kinds of scores, namely stromal score,
immune score, and estimate score, representing the pro-
portion of stromal in tumor tissue, immune cell infiltra-
tion, and tumor purity, respectively. The calculated im-
mune score was used to search for an optimal cut-off by
the survminer package, and the Kaplan-Meier method was
used to evaluate the prognostic value of the immune score
in patients with hepatoblastoma.

2.3. Identification of Co-expression Network Modules and
Immune-related Modules

The WGCNA software package was used to build co-
expression networks. The algorithm first calculated Pear-
son’s correlation coefficient for each gene and used its ab-
solute values to construct the gene expression similarity
matrix. The optimal β-value was selected to construct the
proximity matrix so that our gene distribution fitted the
connection-based scale-free network. The adjacent matrix
and the topological matrix were obtained based on the
β-value, and the distance between the genes was repre-
sented by the dissimilarity between the genes calculated
by the topological overlap matrix (TOM). Then, the gene
cluster tree was divided into different modules (the mini-
mum number of genes in each module was 30). A power of
β = 7 and a scale-free R2 = 0.91 were set as soft-threshold pa-
rameters to ensure a signed scale-free co-expression gene
network. Eigengene connectivity was the correlation be-
tween a gene’s expression profile and the module eigen-
gene. We kept genes whose connectivity to their module
gene was greater than 0.8 to increase the stability of the
module, and a total of 2489 genes were filtered and then
analyzed by WGCNA. MEDissThres was set to 0.7 to merge
similar modules.
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The hierarchical clustering module closely related to
the immune score was selected as the module for subse-
quent analysis, and gene significance (GS), module signif-
icance (MS), and module eigengene (ME) were calculated.
GS was defined as the correlation between gene expression
and clinical information, calculated by the log10 conver-
sion of p-value in linear regression. MS was the average im-
portance of all genes in the module. ME was the first prin-
cipal component obtained through the principal compo-
nent analysis of the gene expression matrix of each mod-
ule, which represented the value of the gene expression
profile in the module. Univariate COX analysis was per-
formed on all genes in the module to further evaluate the
prognostic value of each gene in the immune score-related
module.

2.4. Identification of Molecular Subtypes

The unsupervised clustering algorithm was used to
identify the expression patterns of black module gene ex-
pression, and finally, the number and stability of the cat-
egories were determined. This step was completed by the
"CancerSubtyeps" package (26). Then, the ConsensusClus-
terPlus algorithm (27) was applied, and 1000 operations
were repeated to ensure the stability of the results. The
Kaplan-Meier method was used to evaluate the prognosis
of the two subtypes.

2.5. Analysis of Differentially Expressed Genes

Differentially expressed genes (DEGs) were analyzed
using the "Limma" package (28). The software package
used the empirical Bayes method and improved t-test to
analyze gene expression changes of the molecular sub-
types. The Benjamini-Hochberg method was used to cor-
rect the corrected P-values for multiple tests. Genes with
a corrected P-value < 0.05 and |log FoldChange| > 1 were
identified as differential genes between the molecular sub-
types.

2.6. Immune Cell Infiltration in Tumor Microenvironment

The ssGSEA was introduced to calculate the relative
infiltration of immune cells in TME. Markers of immune
cells were obtained from recently published literature (29).
The relative abundance of each type of immune cell was
expressed by the enrichment fraction in ssGSEA analysis.
Then, the enrichment fraction was standardized, with 0 be-
ing the lowest abundance and 1 the highest abundance.

2.7. Functional Annotation and PPI Network Construction

For inferring the potential biological functions of
genes in the immune-related modules, the clusterProfiler
package was used for gene ontology (GO) enrichment anal-
ysis and the Kyoto encyclopedia of genes and genomes en-
richment analysis. The threshold was set to P < 0.05 af-
ter adjustment. At the same time, the identified genes
in the immune-related modules were used to construct
PPI gene network interaction analysis by Metascape (30).
The Metascape database searches for known and predicted
protein interactions and studies interaction networks be-
tween proteins to help identify core regulatory genes with
the highest MCODE score performed by screening with
MCODE (31).

2.8. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) (32) was used to
identify up-regulated or down-regulated gene pathways
between different molecular subtypes. All the genes were
ranked from large to small according to log-fc (log fold
change) after difference analysis as the input gene set, and
weighted enrichment statistics were used to calculate the
enrichment fraction of each gene set. One thousand phe-
notype permutations were used to evaluate significance.
The reference gene set was the Hallmark gene set (H.A.V7.0
data set downloaded from MsigDB database), and the gene
sets were defined as significant at the 5% level with a false
discovery rate under 25%.

2.9. Prognostic Gene Signature-based Risk Score

The whole cohort was divided into training set and
verification set according to 7:3. Then, the L1 regulariza-
tion (lasso) of the glmnet package of R language was used
to fit the Cox-PH model of immune score-related genes
to determine the gene signature for prognosis. L1 reg-
ularization (lasso) is a useful method to determine the
interpretable prediction rules in high-dimensional data
(33). The optimal lambda value was selected through 1000
cross-validations, and a set of prognostic genes were iden-
tified. According to the expression levels of these prognos-
tic genes and their regression coefficients from the COX-
PH model, an equation for calculating risk score was gen-
erated as follows:

Risk score =βgene 1×exprgene 1 +βgene 2×exprgene
2 +····+ βgene n × exprgene n

The risk score was calculated and assigned to each pa-
tient in the training group. The survminer R package was
used to determine the best cut-off value, and all patients
in the training set were divided into a high-risk group and
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a low-risk group. The overall survival (OS) time of the two
risk groups was compared by Kaplan-Meier survival analy-
sis and the log-rank test. The robustness of the risk scoring
system was verified in the validation set and the entire co-
hort. Kaplan-Meier survival analysis and the log-rank test
were used to analyze OS time between the risk groups.

2.10. Statistical Analysis

The Shapiro Wilk test was used to assess the normality
of the variables. Statistical significance differences among
the normally distributed variables were estimated using
the unpaired Student t-test, and the non-normally dis-
tributed variables were analyzed using the Mann-Whitney
U test. The Kruskal-Wallis and one-way ANOVA tests were
used as nonparametric and parametric methods for three
or more data sets, respectively. The correlation was cal-
culated by Pearson’s correlation coefficient. The Kaplan-
Meier method was used to calculate the survival rate, and
the log-rank test was used to determine the significance
of differences between the survival curves. Regarding the
heterogeneity among different types of cancer, the optimal
cut-off value of each continuous prognostic marker was
recalculated using the survminer R package for different
tumor types. Univariate and multivariate analyses were
performed using the Cox proportional risk model. The
survival prediction accuracy of the prediction model was
evaluated according to time-dependent receiver operating
characteristic curve (ROC) analysis. All statistical analyses
were performed using the R package (version 3.6.3), with P-
values of two tails, and the statistical significance was set
as å = 0.05.

3. Results

3.1. High Immune Score in Hepatoblastoma Benefiting Survival
of Patients

We first combined the data and removed the effect of
batch processing, as shown in Appendix 1 in Supplemen-
tary File. We first analyzed four kinds of scores for hep-
atoblastoma using the ESTIMATES package to clarify the
relationship between the immune score and the survival
of patients with hepatoblastoma. The basic information
and immune score values of the patients are shown in Ap-
pendices 2 and 3 in Supplementary File. We realized that
patients with high immune scores had a better progno-
sis than those with a low immune score. These results
suggested that high immune scores were associated with
longer survival in hepatoblastoma (Figure 1A).

3.2. Identification of a Gene Signature Associated with Immune
Score

The immune score-related genes were identified and
obtained by WGCNA analysis. The genes were clustered
into 13 modules (Figure 1B). Pearson’s correlation coeffi-
cient (Figure 1C) was used to express the correlation be-
tween modules and immune scores. The black module
showed the highest correlation with the immune score
(cor: 0.99, P < 0.001).

The diagram of module membership and gene impor-
tance illustrated the significant correlation for each gene
in the black module (cor: 0.99, Figure 1D). Then, univari-
ate Cox regression analysis was used to analyze each gene
in the black module, and 59 genes significantly associated
with survival in patients with hepatoblastoma were iden-
tified (Figure 1F). The heat map showed the relative expres-
sion of 146 genes in the black module (Figure 1E). We de-
fined these 146 genes as immune score-related genes, and
their expressions are shown in Appendix 4 in Supplemen-
tary File.

3.3. GO Analysis and Protein-Protein Interaction Analysis for Im-
mune Score Related Genes

GO analysis revealed that T cell activation, antigen pro-
cessing and presentation, T cell differentiation, and other
immune-associated pathways were associated with the im-
mune score-related genes (Figure 2A). Protein-protein in-
teraction (PPI) enrichment was done among the list of im-
mune score-related genes. The PPI network represented in-
teractions between proteins. The PPI diagram of the input
genes (Figure 2B) showed that CD247, LCK, HLA-DPA1, and
HLA-DPB1 were the core of the network, and these genes
were mainly involved in the immune response cell surface
receptor signaling pathway and cell-cell adhesion signal-
ing pathway regulation. The molecular complex detection
(MCODE) method was applied to identify closely related
proteins from the PPI network. The MCODE algorithm sub-
clustered the PPI network into five subclusters, and five
MCODE components were made (Figure 2C).

3.4. Identification of Molecular Subtypes Based on Immune
Score Related Genes in Hepatoblastoma

Two different expression patterns of these genes could
be observed in the heat map of the expression profile of the
immune score-related genes in hepatoblastoma. There-
fore, we wondered whether these immune score-related
genes could be used to distinguish the molecular subtypes
of hepatoblastoma. We applied the consistent clustering
method to unsupervised clustering based on the immune
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Figure 1. Prognostic value of immune score and identification of immune-related genes. (A) Kaplan-Meier curves showed that in the GSE75271, E-MAXP-1851 cohort, patients
with higher immune scores had longer OS than patients with lower immune scores. (B) WGCNA identified 13 modules by unsupervised clustering. (C) The black module had
the highest correlation with the immune score (r = 0.99, P = 2e-54), and the black module gene was called the immune score-related gene. (D) The gene significance and
module membership of the genes in the black module exhibited a high correlation. (F) The forest plot with a hazard ratio for the genes of the univariable model in the black
module. The hazard ratio below one indicated that a gene was negatively associated with the event probability and thus positively associated with survival time. The box size
was based on precision, and the x-axis had a logarithmic scale (a bigger box size represented a more precise confidence interval (95% CI)).
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Figure 2. GO annotation and protein-protein interaction of immune score-related genes. (A) GO analysis was performed based on the 146 immune score-related genes. (B)
The PPI network of immune score-related genes. (C) The MCODE algorithm was applied to this network to identify neighborhoods where proteins were densely connected.
Each of the five colors represents five different MCODES.

score-related genes in hepatoblastoma and identified two
molecular subtypes, subtype 1 and subtype 2. The two
molecular subtypes had different prognostic characteris-
tics (P = 0.0036) (Figure 3A), and the average silhouette
width was used to evaluate the clustering effect of the sam-
ples (Appendix 1 in Supplementary File). These results sug-
gested that these immune score-related genes could clas-
sify hepatoblastoma into two molecular subtypes (subtype
1 and subtype 2) with different prognostic and molecular
characteristics, and patients with molecular subtype 1 had
better survival than those with molecular subtype 2.

Differential genes of the two molecular subtypes were
identified by differential gene analysis, and the heat map
showed the expression of differential genes in the two
molecular subtypes (Figure 3B). Then, DEGs were subjected
to GO analysis (Figure 3C). The results revealed enrich-
ments in the small molecule catabolic process, the car-
boxylic acid biosynthetic process, the organic acid biosyn-
thetic process, and the organic acid catabolic process.
GSEA was performed on molecular subtype 1 and subtype
2 hepatoblastoma. Up-regulated pathways included path-
ways related to cell cycle, DNA replication, and P53 sig-
naling pathway in subtype 2 (Figure 3D). Down-regulated

pathways included pathways related to drug metabolism
cytochrome p450, fatty acid metabolism, and peroxisome
in subtype 2 (Figure 3E). The immune cell population distri-
bution in subtype 1 and subtype 2 further illustrated differ-
ent tumor immune microenvironments in the two molec-
ular subtypes of hepatoblastoma (Figure 3F). Among all im-
mune cell populations, the macrophage and the activated
CD4 T cell showed the most significant difference between
subtype 1 and subtype 2, but most immune cells did not
show much difference (Figure 3F).

3.5. Development and Validation of a Risk Scoring System Based
on Immune Score Related Genes

Based on the expression of these immune score-related
genes in the training set and the Cox-PH model of LASSO,
five gene signatures, including CXCL9, PSMB8, MYO1F,
GZMK, and FAM49A, significantly related to the survival
rate were identified. The risk score for each patient was cal-
culated using the following formula:

Risk score = -0.2187× expression of CXCL9 + 0.1361× ex-
pression of GZMK + -0.7372× expression of PSMB8 + 0.8170
× expression of FAM49A + -0.1239 × expression of MYO1F.

The risk score and survival of all patients in the whole
cohort of hepatoblastoma and the expression of five genes
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Figure 3. Identification of molecular subtypes based on immune score-related genes. (A) Kaplan-Meier curves were used to evaluate survival differences between the two
molecular subtypes. (B) Differently expression genes between the two molecular subtypes. (C) GO analysis. Red to blue indicated the number of p adjusted from large to
small, and the length of the bar graph indicated the number of genes enriched. (D) Up-regulated pathways in GSEA analysis. (E) Down-regulated pathways in GSEA analysis.
(F) The difference in the distribution of immune cells between subtype 1 and subtype 2.
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are shown in Figure 4D. All patients in the training set were
divided into a high-risk group and a low-risk group accord-
ing to the optimal cut-off value. Compared to the low-risk
group, the high-risk group had a significantly shorter OS
time (Figure 4A, log-rank, P < 0.0001). In the internal val-
idation set, we tested the prognostic performance of the
risk scoring system based on the above five gene signa-
ture. Patients in the internal validation set were divided
into a high-risk group and a low-risk group according to
the above cut-off value. Similarly, OS time was significantly
longer in the low-risk group than in the high-risk group
(Figure 4B, log-rank, P = 0.003). Finally, we validated the
risk scoring system in the whole hepatoblastoma cohort.
Similarly, the OS time of the high-risk group was shorter
than that of the low-risk group (Figure 4C, log-rank, P <
0.0001). At the same time, we evaluated the risk scoring
system to judge the prognosis of OS in the whole cohort.
The results showed that the receiver operating character-
istic (ROC) curve illustrated a high accuracy rate with the
area under the curve of 1-year OS, 3-year OS, and 5-year OS
reaching 0.84, 0.83, and 0.81, respectively (Figure 4E). Fur-
thermore, the risk score was negatively correlated with the
immune score (r = -0.4, P < 0.001), (Figure 4F). We con-
ducted correlation analysis with quantified immune cells
to further conclude the role of the risk score. The results
showed that the immune score was negatively correlated
with the activated CD8 T cell and the type 1 T helper cell, and
positively correlated with neutrophil, suggesting that the
risk score was correlated with the components of immune
cells in the immune microenvironment (Figure 4G).

4. Discussion

In the past ten years, tumor-related microenvironment
and immunotherapy have made great progress. Hepato-
blastoma, as the most common liver malignant tumor in
children and newborns, has not been reported on a large
scale in this field, which is related to the low incidence of
hepatoblastoma and its relatively few cases. Based on the
data mining of previously published microarray data, we
conducted a series of data analyses on the microenviron-
ment and immune-related genes of hepatoblastoma. The
composition of TME and molecular subtypes was prelim-
inarily clarified based on the immune score-related genes
of hepatoblastoma. Two molecular subtypes with different
prognoses were identified, and the composition of differ-
ent immune cells in the TME of the two molecular subtypes
was discussed. Finally, a prognostic risk score was fitted.
According to the prognostic risk score, patients with hepa-

toblastoma were divided into a high-risk group and a low-
risk group. As a result, the prognosis score was negatively
correlated with the immune score, the activated CD8 T cell,
and the type 1 T helper cell but positively correlated with
neutrophil.

Our results showed that the immune score calculated
by the ESTIMATE algorithm had a prognostic value in hep-
atoblastoma. Patients with high immune scores had rel-
atively good prognoses. Previous studies also confirmed
that the immune score obtained by the ESTIMATE algo-
rithm had a prognostic value in a variety of malignant tu-
mors, such as colorectal cancer (34, 35), lung adenocarci-
noma (36), breast cancer (37), prostate cancer, and liver
cancer (38, 39), which is consistent with our analysis re-
sults. Our results further confirmed that the immune score
had a good prognostic value in a variety of tumors. How-
ever, the calculation of the immune score involves a large
number of genes, which usually requires the microarray
analysis or second-generation sequencing of tumor tissue
samples, which limits the clinical application of this index.

Therefore, WCGNA analysis was used to identify the
most relevant modules of the immune score. The func-
tional enrichment analysis of genes in the black mod-
ule indicated that most of these genes were involved in
immune-related cellular pathways. Protein interaction
analysis showed obvious interaction among these genes.
The MCODE results further indicated that some genes were
involved in the process of antigen presentation, such as
HLA-A, HLA-B, and HLA-C. Some genes were mainly concen-
trated in the chemotactic process of cells, and studies have
shown that these cytokines are involved in the recruitment
of immune cells from TME. Univariate Cox regression anal-
ysis showed that most of these genes had prognostic val-
ues, indicating that the immune score-related genes iden-
tified by WGCNA played an essential role in hepatocytes.

We obtained two molecular subtypes of hepatoblas-
toma with different prognoses by congruent cluster anal-
ysis to further investigate the role of these immune score-
related genes. The different prognoses of the two subtypes
further suggested that the different expression patterns of
these immune score-related genes impacted the survival
of patients with hepatoblastoma. The results of immune
infiltration analysis showed that the different expression
patterns of the immune score-related genes were asso-
ciated with different expressions in infiltrating immune
cells. These results supported the importance of the gene
sets identified in hepatoblastoma. Two hepatoblastoma
molecular subtypes with different prognoses showed no
significant differences in the analysis of immune cell infil-
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tration, which mainly focused on the activated CD4 T cell,
the activated dendritic cell, the CD56 bright natural killer
cell, the macrophage, and the regulatory T cell. Our results
also confirmed, to a certain extent, that different patterns
of immune cell infiltration impacted the prognosis of pa-
tients with hepatoblastoma.

The variables were screened by LASSO, and CXCL9,
PSMB8, MYO1F, GZMK, and FAM49A were selected to con-
struct a risk scoring system based on immune scoring
genes. Patients with hepatoblastoma could be divided into
two groups with different prognoses and risk scores ac-
cording to the calculated best cut-off value of the risk score.
The stability of the scoring system was also confirmed in
the internal validation set. Finally, the prognostic value of
the risk scoring system was verified across the entire co-
hort, and the robustness was further verified. Among the
screened genes, PSMB8 was confirmed to promote the oc-
currence and metastasis of gastric cancer and was a po-
tential biomarker for predicting the poor prognosis (40).
PSMB8 is closely related to the migration, proliferation,
and apoptosis of glioma cells and can be used as a new
prognostic indicator of glioma (41). CXCL9 is produced by
macrophages, endothelial cells, hepatocytes, and tumors.
As a CXCR3 ligand, CXCL9 mainly acts as a chemokine that
activates immune cells, including T cells and natural killer
(NK) cells (42). CXCL9 is expressed in a variety of tumors,
and its biological functions are diverse. Recently, studies
by Fukuda et al. have shown that CXCL9 can be used as a
prognostic indicator of intrahepatic cholangiocarcinoma
(43). The upregulation of CXCL9 might provide a therapeu-
tic strategy for intrahepatic cholangiocarcinoma express-
ing CXCL9 by enhancing anti-tumor immune monitoring.
GZMK gene products are members of a group of related ser-
ine proteases in cytotoxic lymphocyte cytoplasmic gran-
ules. They are involved in the biological processes of cy-
tolytic T lymphocytes and natural killer (NK) cells to rec-
ognize, bind and lyse specific target cells. At present, little
is known about the role of FAM49A. It has been reported
that CYRI-A, the post-translational product of FAM49A, is
a dynamic regulator of large-scale pinocytosis, and it ad-
justs integrin together with CYPTI-B (the post-translational
product of FAM49B, a family gene of FAM49A) (44). It has
been reported that the mutation of MYO1F can increase
the tumorigenicity of cells in vitro, which is characterized
by accelerated growth and enhanced invasion. In thyroid
cancer, the mutation of MYOF can lead to tumor prolifer-
ation (45). Our risk scoring system based on these genes
can well predict the prognosis of patients with hepatoblas-
toma and verify that these cells might play an essential role

in hepatoblastoma. However, further rigorous biological
experiments are needed.

This study analyzed the prognostic value of the im-
mune score in hepatoblastoma and identified genes re-
lated to the immune score according to the previously
published hepatoblastoma chip data. According to the
different expression patterns of these genes, two differ-
ent molecular subtypes were identified and showed differ-
ent patterns of immune cell infiltration. Finally, we con-
structed a risk scoring system based on five genes, which
could be used to predict the prognosis of patients with
hepatoblastoma. However, because hepatoblastoma was a
rare disease, we could not further validate the findings in a
larger case cohort. Our study was based on the data of pre-
vious studies. Thus, it was necessary to collect more spec-
imens from patients with hepatoblastoma and complete
clinical data for verification.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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Figure 4. Immune risk scoring system predicted OS in patients with hepatoblastoma. (A-C) Kaplan-Meier curves were used to evaluate the impact of the immune risk score on
OS in the training set, the internal validation set, and the entire cohort. The red curves represented the high-risk score, and the blue curves represented the low-risk score. (D)
The five-gene signature-based immune risk score in the prognosis of overall survival in the whole data. The black dot plots represented the distribution of immune risk scores,
the blue and red dot plots represented the survival status of patients with hepatoblastoma, and the heat maps represented the expression of five genes (E). An ROC was used
to evaluate the predictive ability of the immune risk scoring system in patients with hepatoblastoma in 1, 3, and 5 years. AUC, the area under the ROC curve. (F) The correlation
between the risk score and the immune score. (E) The correlation between the immune risk score and the ssGSEA score of immune cells. The X-axis was the -log10P-value of the
correlation coefficient. The lower right quadrant represented P < 0.05 and positive correlation, while the upper right quadrant represented P < 0.05 and negative correlation.
The red dots represented immune cells with anti-tumor effects, the blue dots represented immune cells with protective effects on tumor cells, and the green dots represented
cells with unclear effects on tumor cells.
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