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Abstract

Background: Liver cirrhosis is characterized by high mortality, bringing a serious health and economic burden to the world. The
clinical manifestations of liver cirrhosis are complex and heterogeneous. According to subgroup characteristics, identifying cirrho-
sis has become a challenge.
Objectives: The purpose of this study was to evaluate the difference between different subgroups of cirrhosis. The ultimate goal
of research on these different phenotypes was to discover groups of patients with unique treatment characteristics, and formulate
targeted treatment plans that improve the prognosis of the disease and improve the patients’ quality of life.
Methods: We obtained the relevant gene chip by searching the gene expression omnibus (GEO) database. According to the gene
expression profile, 79 patients with liver cirrhosis were divided into four subgroups, which showed different expression patterns.
Therefore, we used weighted gene coexpression network analysis (WGCNA) to find differences between subgroups.
Results: The characteristics of the WGCNA module indicated that subjects in subgroup I might exhibit inflammatory characteris-
tics; subjects in subgroup II might exhibit metabolically active characteristics; arrhythmogenic right ventricular cardiomyopathy
and neuroactive ligand-receptive somatic interaction pathways were significantly enriched in subgroup IV. We did not find a signif-
icantly upregulated pathway in the third subgroup.
Conclusions: In this study, a new type of clinical phenotype classification of liver cirrhosis was derived by consensus clustering.
This study found that patients in different subgroups may have unique gene expression patterns. This new classification method
helps researchers explore new treatment strategies for cirrhosis based on clinical phenotypic characteristics.

Keywords: Liver Cirrhosis, Gene Expression Profile, Classification of Subgroups, Weighted Gene Coexpression Network Analysis
Module

1. Background

Liver cirrhosis is a pathological stage characterized by
diffuse liver fibrosis, pseudolobular formation, and blood
vessel proliferation in and outside the liver as the charac-
teristics of various chronic liver diseases. About two mil-
lion people die of liver disease, and one million people die
of complications of liver cirrhosis in the world every year.
Liver cirrhosis is currently the 11th most common cause
of death in the world, bringing a serious health and eco-
nomic burden to the world (1, 2). Liver cirrhosis can lead to
gastrointestinal bleeding, ascites, hepatic encephalopathy,
and even life-threatening. Thus far, there is still no clear
consensus on the treatment of liver cirrhosis. At present,
it is mainly etiological treatment, anti-inflammatory, anti-
hepatic fibrosis, and active prevention and treatment of
complications. We may need a liver transplant if the liver

is severely damaged (3). Patients with early liver disease
usually have no symptoms and may have reached the ad-
vanced stage of the disease when they are found. Cirrho-
sis can lead to irreversible damage, but the early stage of
chronic liver disease can be reversed to a healthy state.
Therefore, it is essential to find biomarkers to identify the
early stage of chronic liver disease to prevent severe liver
damage. The discovery of biomarkers for liver cancer and
liver cirrhosis has promoted sequencing technology devel-
opment, and high-throughput sequencing is one of the
representative technological innovations in the biological
field in recent decades (4). Recently, many studies have
been conducted to clarify the pathogenesis of liver cirrho-
sis based on the experimental data of microarray and high-
throughput sequencing (5-8).

The cost reduction of high-throughput technology and
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the development of bioinformatics have brought new op-
portunities to reveal the pathogenesis of liver cirrhosis. Al-
though most studies only pay attention to the differences
between cirrhotic cases and normal controls, they rarely
pay attention to the differences between cirrhotic cases.
To reveal the heterogeneity between tumors, cancer cases
are usually divided into multiple subgroups based on gene
expression patterns (9). Inspired by cancer research, we
used the same method to divide cirrhosis cases into four
subgroups, the differences between subgroups were found
by annotating the corresponding coexpression functional
modules with the path of Kyoto Encyclopedia of Genes and
Genomes (KEGG), thereby deepening understanding of the
differences between cases of cirrhosis.

2. Methods

2.1. Data Collection

2.1.1. Data Download and Annotation

We used R/Bioconductor package GEOquery (10) to ex-
tract "gene expression omnibus" (GEO) objects. Searched
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), the
search term was "cirrhosis", the gene chip that meets the
requirements was incorporated into our research. Accord-
ing to the annotation information of the platform file, con-
verted the probe matrix into a gene matrix.

2.1.2. Inclusion and Exclusion Criteria

Inclusion criteria: (1) populations diagnosed with cir-
rhosis, regardless of the severity of the disease; (2) study
type is expression profiling by array; (3) entry type is se-
ries; (4) research contains samples from the cirrhosis dis-
ease group and the normal group.

Exclusion criteria: (1) there is no comparison between
the disease group and the normal group; (2) the sample
size of each group is less than six.

2.2. Removal of Batch Effect

Firstly, the installation package in R/Bioconductor was
used to merge the obtained gene matrix, and batch cor-
rection was carried out (11). When merging data, log2 was
taken for the data with large value for conversion. When
there is a difference between batch effects in the data,
ComBat-seq can obtain better statistical ability and control
the false positive rate compared with other available meth-
ods (12). Therefore, the combat method was used to elimi-
nate the batch effect. Finally, principal component analysis
(PCA) was performed to evaluate the results.

2.3. Consensus Clustering

First, we used the "consensus cluster plus" package in
R/Bioconductor for consensus clustering (13). The included
cases of liver cirrhosis were clustered using the K-means
algorithm with Spearman distance, the clustering results
were determined by referring to the consistency score (>
0.8).

2.4. Extraction of Specific Upregulated Genes and Hub Genes in
Subtypes

The subtypes were compared with other subtypes
to determine the subgroup-specific upregulated genes.
Wilcoxon rank-sum test was used to test the differential ex-
pression. The corrected P-value was < 0.05, and the abso-
lute difference of means > 0.2. The difference of means is
the mean of the subgroup minus the mean of the other
subgroups. The specific upregulated genes in the sub-
group were imported into the STRING database, and the
species condition was set to human, the confidence level
was greater than 0.9, and the protein-protein interaction
(PPI) network was constructed. The PPI was imported into
Cytoscape 3.8.0, and the Degree algorithm in the cyto-
Hubba plug-in was used to obtain the most significant top
10 hub genes.

2.5. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was implemented
in GseaPrerank mode in GSEA 4.1.0. It was used to judge
whether the specific differential genes in each subtype are
also different from normal samples. This operation re-
quires two files, one is the gene set file (type-specific gene
file) composed of subgroup-specific upregulated genes,
and the other is the gene list file, which is obtained by com-
paring the specific type with the normal sample. We com-
pared these two files to see how similar they are.

2.6. Weighted Gene Coexpression Network Analysis

Weighted gene coexpression network analysis
(WGCNA) is often used to find modules of highly rele-
vant genes (14, 15). We used WGCNA to type the gene
and got gene’s module. Firstly, a distance matrix can be
obtained by finding the optimal power value and cal-
culating the distance between genes. It was convenient
for gene clustering and dynamic identification module.
After merging similar modules, we finally determined six
functional modules. At the same time, we used the labeled
heat map function option in the WGCNA package to draw
the heat map, visualized the data, set the low expression
of the gene as blue, the middle expression as white, and
the high expression as red.
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2.7. GO Enrichment Analysis and KEGG Enrichment Analysis

GO enrichment analysis, and KEGG enrichment analy-
sis were performed for each functional module of WGCNA,
in which GO was divided into three modules: (1) biological
process (BP); (2) cellular component (CC); and (3) molecu-
lar function (MF) (16). KEGG is a database that integrates ge-
nomic, chemical, and system function information (17). We
compared the pathways between modules through KEGG
enrichment analysis. During KEGG enrichment analysis,
set p-value < 0.05 for filtration. The enrichment results
were visualized, and the bubble diagram was drawn.

3. Results

3.1. Microarray Data Characteristics

This study included four independent microarray in-
formation, involving four independent clinical trials, all
from the GEO database, GSE14323, GSE77627, GSE123932,
GSE128726, a total of 127 samples (including 79 patients
with liver cirrhosis and 48 healthy subjects). GSE123932
provided clinical information of gender and age.

3.2. Removal of Batch Effect

Four gene chips detected a total of 11,152 genes. In
order to eliminate the batch effect, we used the combat
method. The PCA chart before correction showed that
there were large sample differences between experiments
before the batch effect was eliminated (Figure 1A). In con-
trast, the samples in the corrected PCA chart were ran-
domly distributed, and the results showed that the cross-
platform normalization successfully eliminated the batch
effect (Figure 1B).

3.3. Consensus Clustering of Cirrhosis Cases

After eliminating the batch effect, 79 patients with liver
cirrhosis were divided into subgroups. According to the
consistency scoring situation in the data statistics, the con-
sistency cluster analysis of gene expression profiles was di-
vided into four subgroups, among which the number of
cases in subgroups I, II, III and IV were 21, 30, 18, and 10, re-
spectively. The internal relationship of subgroups is close,
while the correlation between subgroups is weak (Figure
2A). Generally speaking, the stability of the type is posi-
tively correlated with the consistency score. According to
the results of this study, when divided into 2, 3, or 4 groups,
the cluster agreement score of each subgroup was higher
than 0.8 (Figure 2B), which indicated that these classifica-
tions were more robust than other clusters. When consid-
ering more groups better, 79 patients with liver cirrhosis
were divided into four subgroups.

3.4. GSEA Enrichment Analysis and WGCNA Analysis Results

The 2033, 2134, 804, and 1892 genes that were specif-
ically upregulated in subgroups I, II, III, and IV were de-
termined by differential analysis. The subgroup differen-
tial genes were imported into the STRING database, and a
PPI network was constructed. Imported it into Cytoscape
3.8.0 software and arranged the nodes in an orderly man-
ner according to the degree value. The top 10 hub genes
of each subgroup are shown (Figure 3A - D). The results of
GSEA enrichment analysis showed that the specific upreg-
ulated genes in the subtypes were also significantly differ-
ent when compared with normal samples (Figure 4A - D,
FDR < 0.05). It still needs to be emphasized that subgroup
III had the least subgroup-specific upregulated genes, and
compared with the normal group, there were less specific
genes (Table 1).

We typed 6,863 specific genes upregulated in four sub-
groups by WGCNA, and identified six WGCNA modules. The
subgroups corresponding to WGCNA modules are summa-
rized in Table 1. The genes of six modules were analyzed
by KEGG. The results showed that TGF-β signaling pathway,
viral protein interaction with cytokines, and cytokine re-
ceptors, including a variety of chemokines and inflamma-
tory factors, were only enriched in the black module sig-
nificantly. At the same time, the PI3K/Akt signaling path-
way was also significantly enriched in the black module,
and there were many upregulated genes. The genes in
the black module were upregulated in subgroup I, indicat-
ing that subjects in subgroup I may exhibit inflammatory
characteristics. Fatty acid metabolism and biosynthesis
of cofactors were only significantly enriched in the brown
module, and carbon metabolism and protein processing
pathways in the endoplasmic reticulum were only signif-
icantly enriched in the brown and purple module. The
genes in the brown and purple module were upregulated
in subgroup II, indicating that subjects in subgroup II may
show metabolic activity; arrhythmogenic right ventricu-
lar cardiomyopathy and neuroactive ligand-receptor inter-
action pathways were only significantly enriched in the
turquoise module, and the genes in the turquoise module
were upregulated in subgroup IV. We did not find a signifi-
cant pathway of upregulation in the third subgroup. Based
on the above results, different subgroups regulate the oc-
currence or progression of liver cirrhosis through specific
pathways (Figure 5A - B).

After GO enrichment analysis (Figure 5C - E), the bi-
ological process (BP): the black module mainly included
the regulation of cell-cell adhesion, positive regulation
of cell adhesion, positive regulation of cell-cell adhesion,
blood coagulation, and hemostasis; the brown module
mainly included small molecule catabolic process, cellular
amino acid metabolic process, cellular ketone metabolic
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Figure 1. PCA of gene expression data set. scatters of different colors represent samples from four different data sets. A, PCA diagram before batch correction; B, PCA diagram
after batch correction.

Table 1. The Number of Differentially Expressed Genes in Each Subgroup Was Obtained By Comparing the Control Group and the Case Group and the Weighted Gene Coex-
pression Analysis Module

Subtype Specific Genes were Compared with
The Normal Group

Specific Genes Compared with Other
Subgroups

Specific Upregulated Genes in
Subgroup

Modular

I 6,021 4,848 2,033 Black

II 3,387 3,169 2,134 Brown, purple

III 3,929 2,274 804

IV 6,404 6,407 1,892 Turquoise

process, and response to endoplasmic reticulum stress;
the purple module mainly included nucleotide-excision
repair, respiratory electron transport chain, ATP synthe-
sis coupled electron transport, mitochondrial ATP syn-
thesis coupled electron transport, cellular respiration,
etc.; and the turquoise module mainly included axono-
genesis, gland development, regulation of trans-synaptic
signaling, modulation of chemical synaptic transmis-
sion, embryonic organ development, sensory organ mor-
phogenesis, embryonic organ morphogenesis, etc. Cell
components (CC): the black module concentrated on fo-
cal adhesion, cell-substrate junctions, membrane rafts,
collagen-containing extracellular matrix, membrane mi-
crodomain, and endocytosis vesicles; the brown mod-
ule concentrated on mitochondrial matrix, mitochondrial
protein complex, mitochondrial inner membrane, focal
adhesion, cell-substrate junction, collagen-containing ex-
tracellular matrix; the purple module concentrated on mi-
tochondrial matrix, mitochondrial protein complex, mi-
tochondrial inner membrane, organellar ribosome, respi-
rasome, and oxidoreductase complex; the turquoise mod-
ule mainly concentrated on transmembrane transporter

complex, transporter complex, synaptic membrane, neu-
ron to neuron synapse, postsynaptic membrane, and ion
channel complex. Molecular function (MF): the black
module mainly included receptor ligand activity, signal-
ing, receptor activator activity, DNA-binding, transcrip-
tion factor binding, etc.; the brown module mainly in-
cluded DNA-binding, transcription factor binding, oxi-
doreductase activity, acting on the CH-OH group of donors,
NAD or NADP as acceptor, lyase activity, carbon-oxygen
lyase activity, electron transfer activity; the purple mod-
ule mainly included NADH dehydrogenase activity, NADH
dehydrogenase (quinone) activity, NADH dehydrogenase
(ubiquinone) activity; the turquoise module mainly in-
cluded signaling receptor activator activity, receptor lig-
and activity, metal ion transmembrane transporter activ-
ity, channel activity, neurotransmitter receptor activity,
etc.

4. Discussion

Cancer molecular subtypes inspired this research. The
current molecular subtypes guide the diagnosis and clini-
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Figure 2. Consensus clustering of gene expression profiles in patients with liver cirrhosis. A, the consistency matrix, when the number of clusters, is 4 that is determined by
the minimum consistency score (> 0.8) of the subgroup; B, consistency scores for subgroups with cluster numbers between 2 and 10.

cal treatment of many cancer types (18-20). In addition to
cancer research, non-cancerous diseases can also identify
new and clinically relevant molecular subtypes of diseases
based on gene expression profiles (21, 22). Although these
molecular subtypes are not perfect, they help for the diag-

nosis and treatment of diseases to a certain extent.

Liver cirrhosis is relatively complex and shows clinical
heterogeneity. Previous studies mostly compared the gene
expression profiles of liver cirrhosis cases with normal con-
trols. In this study, we further divided liver cirrhosis cases
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Figure 3. Top 10 hub genes in the four subgroups.

into subgroups. Unlike previous studies, we linked specific
pathways with specific subgroups of liver cirrhosis.

The hub genes in the first subgroup are mainly STAT3,
SMAD2, SMAD4, MYC. STAT3 regulates basic cell processes,
including inflammation, cell growth, proliferation, differ-
entiation, etc. Studies have shown that STAT3 integrates
a variety of profibrotic signals and may be the core me-
diator of fibrosis (23). Moreover, TGF-β is one of the key
drivers of fibrosis. The production of TGF-β is related to
the progression of liver fibrosis. In many experimental
models, inhibiting the TGF-β1 signaling pathway has been
shown to reduce the development of fibrosis (24). In TGF-
β1 signaling, the Smads protein is the main mediator of
receptor-induced phosphorylation and nuclear transloca-
tion (25, 26). In chronic liver disease, inflammatory medi-

ators interact with c-Myc, leading to fibrosis, liver cirrho-
sis, and liver tumors (27). In our study, the TGF-β signal-
ing pathway was most significantly enriched in the first
subcomponent type. TGF-β signaling is involved in the en-
tire process from liver injury to inflammation and fibro-
sis, cirrhosis, and cancer, TGF-β plays a key role in hepa-
tocyte cell growth and apoptosis and promotes liver dif-
ferentiation during embryogenesis and physiological liver
regeneration. However, due to chronic liver injury, high
levels of TGF-β cause stellate cells to activate myofibrob-
lasts and a large number of hepatocytes to die, promot-
ing liver fibrosis and cirrhosis (28).Viral protein interac-
tions with cytokine and cytokine receptors were also most
significantly enriched in the first subcomponent type, in-
cluding a variety of chemokines and inflammatory factors,
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Figure 4. GSEA enrichment analysis. The enrichment plots of A, B, C and D illustrate the specific upregulated genes in the subtypes were also significantly different when
compared with normal samples.

such as chemokines CCL2, CX3CL1, etc., biliary epithelial
cells (BECs) in damaged small bile ducts in primary biliary
cirrhosis (PBC) show senescent features. Senescent BECs ex-
hibit upregulation of a variety of chemokines and chemo-
tactic activities. The expression of CCL2 and CX3CL1 in-
creases in senescent BECs in PBC, which may promote the
infiltration of corresponding cells expressing CCR2 and
CX3CR1, and further aggravate the PBC bile duct inflamma-
tion of the lesion (29, 30).

At the same time, PI3K/Akt signaling pathway was also
significantly enriched in subgroup I, and there were many
upregulated genes. PI3K/Akt signaling pathway regulates
the activation of downstream signaling molecules. It plays
a key role in regulating the immune response and the re-
lease of inflammatory factors in vivo and in vitro (31). Com-
bined with the results of GO functional enrichment anal-
ysis, the first subcomponent mainly included the regula-
tion of cell-cell adhesion, positive regulation of cell adhe-

Hepat Mon. 2021; 21(10):e118535. 7



Zhang YX et al.

Figure 5. A, the heat map shows the gene expression levels of the six WGCNA modules in each subgroup; B, Results of KEGG enrichment analysis for genes in each WCGNA
module; C - E, the gene enrichment analysis of each WGCNA module by GO pathway.

sion, positive regulation of cell-cell adhesion, blood coag-
ulation, and hemostasis, and other biological processes.
The combination of cell to extracellular matrix interac-
tion and cell-cell adhesion depends on intercellular ad-
hesion molecules. Cell adhesion molecules participate
in various interactions. They can broadly support fibro-
sis formation by releasing TGF-β, promoting fibrosis, or
mediating leukocyte migration. Some candidate cell ad-

hesion molecules have been evaluated as targets for pre-
venting and/or reversing liver inflammation and fibrosis
(32). Inflammation triggers clotting, reduces the activity
of natural anticoagulant mechanisms, and impairs the fib-
rinolytic system. Inflammatory mediators can increase
platelet count, platelet reactivity, downregulate the natu-
ral anticoagulation mechanism, activate the coagulation
system, promote the spread of coagulation response, and
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damage fibrinolysis. Similarly, coagulation can increase
the inflammatory response by releasing mediators from
platelets and activated cells (33). In summary, it was indi-
cated that subjects in subgroup I may exhibit inflamma-
tory features.

In the second subgroup, the hub genes mainly include
RPS27A, HRAS, SEC1, UBA52, etc. Among them, RPS27a per-
forms extra-ribosomal functions in addition to playing a
role in ribosome biogenesis and post-translational mod-
ifications of proteins. RPS27a plays a role in mouse liver
cancer and some overexpressed in human tumors. Studies
have reported that STAT3 is the key activator of the RPS27a
promoter, and upregulation of RPS27a depends on STAT3
phosphorylation (34). Studies have shown that increased
HRAS protein level can directly stimulate transduction of
the Smad2/3 signal and the accumulation of type I colla-
gen, which is related to the appearance fibrosis (35, 36). Up-
regulation of metabolism was observed in subgroup II, in-
cluding fatty acid metabolism, cofactor biosynthesis, car-
bon metabolism, and protein processing pathways in the
endoplasmic reticulum. Combined with the results of the
GO functional enrichment analysis, subgroup II mainly in-
cluded the small molecule catabolic process, the metabolic
process of cellular amino acids, the metabolic process of
cellular ketones and the response to endoplasmic retic-
ulum stress, repair of nucleotides, respiratory electron
transport chain and other biological processes, indicat-
ing that subjects in subgroup II may exhibit metabolic ac-
tivity characteristic. Systems biology studies have shown
that carbohydrates, amino acids, and lipid-related path-
ways have changed in liver fibrosis and cirrhosis, and more
studies are needed to verify metabolic characteristics and
determine therapeutic targets of liver fibrosis (37).

The hub genes in the fourth subgroup mainly include
SRC, TOP2A, UBE2C, and so on. Studies have shown that
Src is related to liver fibrosis. The expression of Src mRNA
in liver tissues of mice with liver fibrosis is significantly
increased, the levels of phosphorylated Src and total Src
are significantly increased; Src in liver tissues of patients
with liver cirrhosis is significantly higher than in liver tis-
sue from the normal control group. Src inhibition can pre-
vent TAA-induced liver fibrosis, inhibit HSC activation, and
is a potential therapeutic target for liver fibrosis (38). Dif-
ferential gene expression analysis and weighted gene cor-
relation network analysis were performed in tissue sam-
ples from normal liver, cirrhosis, and HCC to determine
the pathological progress of 20 hub genes from cirrhosis
to HCC. TOP2A is one of the pivotal genes in the patho-
logical progression from liver cirrhosis to HCC (39). Re-
search results indicate that UBE2C may be a key gene in
the progression of HCC and a promising therapeutic target
for the treatment of HCC (40, 41). Arrhythmogenic right

ventricular cardiomyopathy and the neuroactive ligand-
receptor interaction pathway were only significantly en-
riched in subgroup IV. Studies have shown that the neu-
roactive ligand-receptor interaction pathways are closely
related to the appearance and development, invasion, and
metastasis of liver cancer. Various traditional Chinese
medicine and Chinese patent medicine exert their curative
effects by influencing this signaling pathway (42-44). How-
ever, the relationship between this pathway and its key tar-
gets and liver cirrhosis needs further study. In the third
subgroup, the hub genes mainly include B4GALT2, FUT9,
FUT3, EGFR, and so on. Relevant studies have shown that
the expression of EGF in the liver increases during cirrho-
sis, and inhibition of EGFR can reverse liver fibrosis. The
use of FDA-approved inhibitors to inhibit EGFR provides a
promising treatment for reducing liver fibrosis and pre-
venting HCC (45). We did not find a significantly upregu-
lated pathway in subgroup III, which may be related to the
small sample size.

The above results show that different subgroups of
liver cirrhosis have different gene expression patterns
and obvious heterogeneity, which may represent differ-
ent stages of liver cirrhosis, and we seek for large-sample
prospective trials to verify it in the future. This study has
certain limitations. Because only GSE123932 provided clini-
cal information of gender and age, and the sample size was
small, the correlation between clinical characteristics and
WGCNA module could not be carried out.

In conclusion, inspired by the study of cancer sub-
groups, we adopted a similar strategy to reveal the molec-
ular subgroups of liver cirrhosis. The ultimate goal of
the study of these different phenotypes is to find patient
groups with unique treatment characteristics and formu-
late targeted treatment plans. Our study suggests that pa-
tients in different subgroups may have their unique molec-
ular characteristics. This new classification method is help-
ful for researchers to explore new treatment strategies for
liver cirrhosis according to clinical phenotypic characteris-
tics, to improve the prognosis of the disease and improve
the quality of life of patients.
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