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Abstract

Background: Mesenchymal stem cells (MSCs) are the most promising tools for cell treatment and human tissue regeneration, e.g.,
in liver fibrosis. Mesenchymal stem cells repair tissue damage through paracrine mediators such as exosomes. Types and concentra-
tions of inflammatory mediators, including transforming growth factor-beta (TGFβ1), in MSCs microenvironment can affect MSCs’
function and therapeutic potency.
Objectives: This experimental study aimed to explore the effects of Wharton jelly MSCs (WJ-MSCs) exosomes on fibrotic gene expres-
sion and Smad2/3 phosphorylation (phospho-Smad2/3 (p-Smad2/3)). Moreover, we further investigated whether WJ-MSCs pretreat-
ment with different concentrations of TGFβ1 changes the anti-fibrotic properties of their exosomes.
Methods: After isolation from the umbilical cord, WJ-MSCs were characterized by observing differentiation and measuring sur-
face biomarkers using flowcytometry. The WJ-MSC-derived exosomes were extracted and identified using transmission electron
microscopy (TEM), dynamic light scattering (DLS), and western blotting. Real-time PCR and western blot for extracellular matrix
(ECM) and p-Smad2/3 expression detection were used to investigate the effect of exosomes from untreated and TGFβ1-pretreated
WJ-MSCs on activated hepatic stellate cells (HSCs).
Results: Phospho-Smad2/3,α-smooth muscle actin (α-SMA), and collagen1α1 levels were enhanced following treatment with TGFβ1,
whereas E-cadherin was decreased. However, the outcomes were reversed after treatment with WJ-MSC-derived exosomes. Exosomes
from TGFβ1-pretreated WJ-MSCs induced a significant decrease in p-Smad2/3 levels in activated HSCs, accompanied by the upregu-
lation of E-cadherin gene expression and downregulation of α-SMA and collagen1α1 when compared to untreated WJ-MSC-derived
exosomes. The p-Smad2/3 proteins were significantly decreased (fold change: 0.23, P-value < 0.0001) after exposure to low-dose
TGFβ1-pretreated WJ-MSC-derived exosomes (0.1 ng/mL), showing the best effect on activated HSCs.
Conclusions: Exosomes derived from untreated WJ-MSCs could regress TGFβ-Smad2/3 signaling and the expression of fibrotic mark-
ers in activated LX-2 cells. However, these effects were significantly profound with applying exosomes derived from 0.1 ng/mL TGFβ-
pretreated WJ-MSCs. We also observed the dose-response effects of TGFβ on WJ-MSCs-derived exosomes. Therefore, exosomes derived
from TGFβ-pretreated WJ-MSCs may be critical in improving fibrosis and benefit liver fibrosis patients.
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1. Background

Mesenchymal stem cells (MSCs) are the most promis-
ing tools for cell treatment and human tissue regener-
ation because of their multi-potency of differentiation,
self-renewal capability, paracrine effects, and immune-
modulatory potential (1). Mesenchymal stem cells are iso-
lated from bone marrow (BM), adipose tissue (AT), cord
blood, and Wharton’s jelly (WJ-MSCs). Due to limited pro-
liferative capacity, low cell concentration, invasive and

painful isolation process, and the risk of infection, the ther-
apeutic use of adult MSCs, such as BM, has been hampered.
Instead, WJ-MSCs have much potential for allogeneic and
autologous transplantation because of their high avail-
ability, low cost, and ease, non-invasive isolation method.
Also, WJ-MSCs have a high proliferative capacity, are non-
tumorigenic, and induce no teratoma after transplanta-
tion. As a result, WJ-MSCs are excellent for regenerative
medicine (2). Mesenchymal stem cells repair tissue dam-
age through paracrine mediators such as exosomes (3).
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Exosomes are one of the MSC-derived paracrine media-
tors (4). They are small membrane-bound vesicles ranging
from 30 to 100 nm secreted by different cell types. They also
carry cargos such as proteins, mRNA, and non-coding RNA
to target tissues (5).

Many studies demonstrated that MSCs have im-
munomodulatory functions linked to several factors and
molecules secreted by these cells (6). The immunomod-
ulatory functions of MSCs may depend mainly on their
microenvironment in tissues. Indeed, the types and con-
centration of inflammatory mediators in MSCs microen-
vironment can affect MSCs’ function and therapeutic
potency (7). Pretreatment with growth factors, including
cytokines, can alter host tissue via autocrine and paracrine
pathways, resulting in downstream signal transduction
for cell differentiation and survival.

Mesenchymal stem cells have a variety of cytokines and
growth factors with different biological functions, such as
anti-inflammatory and immune-modulatory effects. How-
ever, their short biological half-life inhibits their perma-
nent therapeutic effects (8). Pretreatment of MSCs with
pro-inflammatory mediators is commonly used to medi-
ate inflammation in damaged tissues (9), reduce oxidative
stress and apoptosis (10), improve MSCs efficacy in vivo (1),
and enhance allotransplant survival and function (11). Sev-
eral studies show that the pretreatment of MSCs is effective
in repairing various injured tissues, including diabetes
mellitus (12), acute lung injury (ALI) (13, 14), nephropathy
(15), and induced radiation damage (16).

One of the influential immunosuppressive cytokines
often presenting in inflammatory states is the transform-
ing growth factor-beta 1 (TGFβ1) (17). The TGFβ pathway
is believed to play a dual role during the pathogenesis of
inflammation depending on its concentration and partic-
ipating cell types (18). Mesenchymal stem cells have recep-
tors for TGFβ to respond to it (19). Although TGFβ is an im-
munosuppressant (20), its high concentrations during the
inflammatory process may intensify MSCs’ inflammatory
responses (19).

Many basic and clinical studies have demonstrated the
beneficial effects of MSC-based therapy on liver fibrosis
(21). The immunomodulating activity of MSCs makes them
very effective for regulating the inflammatory process in
liver fibrosis (22). Fibrosis that leads to the over-deposition
of extracellular matrix (ECM) proteins is a consequence
of chronic injury and inflammation of the liver (23). Fol-
lowing a fibrogenic stimulus, hepatic stellate cells (HSCs)
are effectively converted to fibrogenic myofibroblasts (24).
In liver fibrosis, ECM accumulates excessively in the liver,
leading to cirrhosis and hepatocellular carcinoma (HCC)
(25). Transforming growth factor-beta is one of the crucial
pro-inflammatory and profibrogenic mediators in liver fi-

brosis (26), which plays an essential role in regulating crit-
ical biological phenomena through the TGFβ signaling
pathway in MSCs (27), including proliferation (28), differ-
entiation (29), and migration of MSCs (30). The TGFβ path-
way is believed to play a dual role in the pathogenesis of
inflammation depending on its concentration and partic-
ipating cell types (18). The secretory level of TGFβ1 is ele-
vated in injured areas, which promotes the repair of dam-
aged areas (31). Transforming growth factor-beta, through
the activation of HSCs, promotes excessive expression and
accumulation of ECM proteins in a Smad2/3-dependent
pathway (32). Therefore, HSCs inactivation has emerged
as an important therapeutic target to regress liver fibrosis
(33). However, the optimization of these external agents for
the pretreatment of MSCs and the underlying mechanisms
need to be further explored to improve the therapeutic ef-
fects of MSCs.

2. Objectives

We evaluated the effects of WJ-MSCs-derived exosomes
on fibrotic gene expression, including α-smooth muscle
actin (α-SMA), E-cadherin, and collagen1α1 and Smad2/3
phosphorylation. Moreover, we further investigated
whether the pretreatment of WJ-MSCs with different con-
centrations of TGFβ changes the anti-fibrotic properties
of their exosomes.

3. Methods

3.1. Materials

Low glucose-Dulbecco’s Modified Eagle’s Medium
(DMEM), penicillin-streptomycin, and trypsin were pro-
vided from Idea-Zist, and fetal bovine serum (FBS) was
provided from Gibco. Phospho-Smad2/3 (Thr8) poly-
clonal antibody was purchased from Elabscience, and
α-SMA (CGA7), CD81 (B-11), E-cadherin (67A4), CD9 (C-4),
COL1A1 (3G3), m-IgGκ BP-HRP, mouse anti-rabbit IgG-HRP,
and GAPDH (6C5) from Santa Cruz Biotechnology, Inc.
Beckman Coulter Company provided FITC-conjugated an-
tibodies for CD34 and CD45 and PE-conjugated antibodies
for CD44 and CD105 (Nyon, Switzerland). The recombi-
nant human TGFβ1 protein was provided from Abcam,
UK. The TGF-β1 protein was solubilized in 10 mM Citric
acid, pH: 3.0, and stored at -80°C per the manufacturer’s
recommendation. Adipogenic and osteogenic media were
provided from Bonyakhte, Iran. Oil Red O and Alizarin
Red S were obtained from Sigma-Aldrich, St. Louis, MO,
USA. A bicinchoninic acid assay (BCA) protein assay kit was
purchased from Parstous Biotechnology, Iran, enhanced
chemiluminescence (ECL) system from Bio-Rad, USA, and
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RIPA lysis buffer and protease inhibitor cocktail from
Santa Cruz Biotechnology, USA.

3.2. Cell Lines and Culture Conditions

The whole process is schematically shown in Figure
1. In this experimental study, human HSC cell line LX-
2 was gifted by Scott L. Friedman, Mount Sinai School of
Medicine, New York, NY, USA. LX-2 cells were cultured in
a low glucose-DMEM medium with 1% antibiotics peni-
cillin/streptomycin supplemented with 10% FBS in 5% CO2

at 37°C. LX-2 cells were seeded into six-well plates (1 × 104

cells/well) for the in vitro experiment. After attaining 80%
confluency, LX-2 cells starved for 16 hours in DMEM contain-
ing 0.1% FBS. LX-2 cells were treated with 10 ng/mL TGFβ1
for 72 hours to activate HSCs. After that, the cells were col-
lected and stored at -70°C for subsequent examination.

3.3. Primary Isolation and Identification of Wharton’s Jelly Mes-
enchymal Stem Cells

After obtaining informed consent from the parents
of neonates, WJ-MSCs were isolated from the umbilical
cords. The umbilical cord tissue was extensively cleaned
and washed with phosphate-buffered saline (PBS) before
being transferred to the laboratory under sterile condi-
tions. Then, the umbilical cord tissue was cut into 3 - 5
mm pieces, and its vessels were discarded. Wharton’s jelly
mesenchymal stem cells were grown in usual growth me-
dia (DMEM supplemented with 10% FBS, 100 U/mL peni-
cillin, and streptomycin) and maintained at 37°C in a 5%
CO2 incubator. After three to five days, non-adherent cells
were removed. The media were replaced every day until
cells reached 80% confluency. Wharton’s jelly mesenchy-
mal stem cells were cultured for three passages and then
used for experiments.

The capacity of WJ-MSCs to differentiate into adi-
pogenic and osteogenic lineages was determined. Adi-
pogenic and osteogenic differentiation was induced by WJ-
MSC culture for three weeks in adipogenic and osteogenic
media, respectively. Adipogenic differentiation was as-
sessed using Oil Red O staining to determine intracellular
fat accumulation. Extracellular matrix calcification was in-
vestigated by Alizarin Red S using an inverted microscope
(Olympus IX50, Japan).

Flowcytometry analysis characterized the phenotypes
of WJ-MSCs. It was done by phycoerythrin (PE)-labeled hu-
man anti-CD44 and anti-CD105 (as positive markers) and
fluorescein isothiocyanate (FITC)-labeled anti-CD34 and
anti-CD45 (as negative markers). On a FACSCanto plus in-
strument (BD Bioscience, San Jose, CA, USA), at least 10,000
events were collected, and the results were analyzed using
FlowJo software.

3.4. Transforming Growth Factor-Beta 1 Pretreatment of Whar-
ton’s Jelly Mesenchymal Stem Cells

Recombinant human TGFβ1 dilutions were made from
aliquots in serum-free DMEM immediately before use. Dif-
ferent concentrations of TGFβ1 were used to treat WJ-MSCs
(0.1, 0.5, 1, 5, and 10 ng/mL) (14). Initially, WJ-MSCs were pre-
treated with serum-free control media and different con-
centrations of TGFβ1 (diluted in serum-free media) for 24
h. Afterward, the stimulations were removed, and both
control and pretreated cells were cultured in serum-free or
specific differentiation induction media to determine the
effects of pretreatment on MSC functions.

3.5. Extraction and Identification of Exosome-Derived Whar-
ton’s Jelly Mesenchymal Stem Cell

The exosomes were isolated from the supernatants
of WJ-MSC cultures. The WJ-MSCs medium was replaced
with a medium containing less FBS to isolate exosomes ev-
ery two days. Exosomes were isolated from FBS-free con-
ditional medium (CM) using the Exocib kit (Cib Biotech
Co.) after the FBS level was gradually reduced to zero.
Seventy-two hours later, the CM medium was collected and
centrifuged at 4,000 × g for 10 min at +4°C to remove
cell debris. Briefly, the filtered CM was combined with
the exosome precipitation solution and incubated at +4°C
overnight. The samples were centrifuged at 3,000 rpm for
40 minutes. The pellet was then re-suspended in PBS after
the supernatants were discarded. Finally, the purified exo-
some samples were kept at -70°C for storage.

The exosomes were fixed with 4% paraformaldehyde,
loaded on carbon grids, and then dyed with 1% phos-
photungstic acid at room temperature for two minutes.
Transmission electron microscopy (TEM; Zeiss EM10C 100
KV, Germany) was used to investigate the morphologi-
cal features of isolated exosomes. Dynamic light scatter-
ing (DLS) is a technique to determine the size distribu-
tion of particles with diameters ranging from 1 nm to
6 µm. Dynamic light scattering Zetasizer Nano ZS was
used to determine the sample size distribution (Malvern
Instruments, UK). A BCA protein assay kit was used to
measure the protein concentration of the exosomes. The
identification of exosomes was performed by the Western
blot assay using typical exosome markers (CD9 (1: 300;
Santa Cruz) and CD81 (1: 100, Santa Cruz)). Briefly, the 20
µg protein samples were separated by 10% sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
transferred onto PVDF membrane, and then incubated
with primary antibodies of anti-CD9 and anti-CD81 at 4°C
overnight, after blocking with 5% non-fat milk for one hour
at 37°C. After three 10-min washes in TBST, the membranes
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Figure 1. Schematic diagram of the experimental procedure to study the potential of untreated and transforming growth factor-beta 1-pretreated exosomes of Wharton’s jelly
mesenchymal stem cells on activated HSCs in vitro

were treated for two hours at 37°C with the mouse anti-
rabbit IgG-HRP (1: 1000; Santa Cruz), rinsed again, and in-
cubated with chemiluminescent substrates. An ECL system
was used to visualize the blots. The extracted exosomes (50
µg/mL) (34, 35) were added to the plates to treat HSCs, while
control cells remained untreated.

3.6. RNA Extraction and qRT-PCR

Total RNAs were isolated using an RNA extraction
kit (Biobasic, Canada). Reverse transcription was con-
ducted with a 5X All-In-One RT-PCR Master Mix kit (Biobasic,

Canada) using the ABI Prism Quantistudio3 Sequence De-
tection System (Applied Biosystems, Foster City, CA). SYBR
Green master mix performed the PCRs (amplicon). The av-
erage expression of each target gene was demonstrated
relative to an internal reference gene (GAPDH). The 2-∆∆Ct

method was used to calculate the relative expression of
each gene. The gene expressions of α-SMA, E-Cadherin, and
collagen1α1 were then investigated after LX2 was treated
with TGFβ1 at a concentration of 10 ng/mL. These experi-
ments were performed three times. The primer sequences
for investigated genes are listed as follows:
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ACTA2 (forward): 5’-TGGCTATTCCTTCGTTACTACTGCT-
3’, ACTA2 (reverse): 5’-CATCAGGCAACTCGTAACTCTTCTC-
3’, COL1A1 (F): 5’-CCTGGGTTTCAGAGACAACTTC-
3’, COL1A1 (R): 5’-TCCACATGCTTTATTCCAGCAATC-
3’, CDH1 (F): 5’-TACCCTGGTGGTTCAAGCTG-3’, CDH1
(R): 5’-CCTGACCCTTGTACGTGGTG-3’, GAPDH (F): 5’-
ACTTTGGTATCGTGGAAGGACT-3’ and GAPDH (R): 5’-
GTAGAGGCAGGGATGATGTTCT-3’.

3.7. Western Blot

The cells were homogenized using RIPA lysis buffer
and a protease inhibitor cocktail. Then, it was centrifuged
at 14,000 g for 20 minutes at 4°C, and the supernatant
was collected. After determining protein concentrations,
equal amounts of protein (50 µg) were loaded into a 7.5
- 12% SDS-PAGE gel for electrophoresis. Then, gels were
electroblotted onto nitrocellulose membrane, which was
blocked for one hour at room temperature with 5% non-
fat blocking grade milk (Bio-Rad, USA). Primary antibody
staining was performed against E-Cadherin (1: 1000, Santa
Cruz), α-SMA (1: 1000, Santa Cruz), Collagen1α1 (1: 1000,
Santa Cruz), and phosphorylation Smad2/3 proteins (1:
1000, Elabscience) at 4°C overnight. The procedure was
followed by the HRP-linked secondary antibody (1: 1000,
Santa Cruz) staining. After washing in TBST, the sam-
ples were treated with mouse anti-rabbit IgG-HRP (1: 1000,
Santa Cruz) for one hour at room temperature. Blots were
observed using an ECL kit, and the bands were detected us-
ing Bio-Rad ChemiDoc XRS+.

3.8. Statistical Analysis

PRISM software performed all statistical analyses
(Graphpad, San Diego, CA). The between-group compar-
isons were made using ANOVA, followed by Tukey post
hoc tests. The differences were considered statistically
significant at P < 0.05. Results are expressed as the
mean ± standard error of means (SEM) of at least three
independent experiments.

4. Results

4.1. Identification of Phenotype in Wharton’s Jelly Mesenchymal
Stem Cell

As shown in Figure 2A, flowcytometry revealed that ob-
tained cells were positive for CD105 and CD44 and nega-
tive for CD45 and CD34, indicating the characteristics of
WJ-MSCs. The cell morphology was fibroblastic, typical of
WJ-MSCs. Adipogenic differentiation was confirmed with
increased fat accumulation in red granules observed using
Oil red O staining (Figure 2B). A significant increase in cal-
cium deposition after staining with Alizarin Red approved
the osteogenic differentiation of WJ-MSCs (Figure 2C).

4.2. Characterization of Wharton’s Jelly Mesenchymal Stem Cell
Exosome

The TEM photograph showed the extracted exosomes
of round and elliptical vesicles with a complete double-
layer membrane and low electron density materials (Fig-
ure 3A). The marker proteins of CD9 and CD81 were ex-
pressed in exosomes with significantly higher levels than
in WJ-MSCs using western blot analysis (Figure 3B). Finally,
the exosome size analysis revealed that they had a mean di-
ameter of approximately 73 nm (Figure 3C). All results indi-
cated the successful isolation of WJ-MSCs and the exosomes
of WJ-MSCs.

4.3. Influence of Transforming Growth Factor-Beta 1 on mRNA
Expression and Protein Levels of Extracellular Matrix Compo-
nents

Treatment with TGFβ1 (10 ng/mL) significantly in-
creased the expression level of ECM genes such as
collagen1α1 (P < 0.0001) and α-SMA (P < 0.0001) and
decreased E-cadherin (P < 0.0001) of activated HSCs (Fig-
ure 4A - C). Furthermore, treatment with TGFβ1 increased
the protein expression levels of Collagen1α1 (P < 0.0001),
α-SMA (P < 0.0001), and p-Smad2/3 (P < 0.0001) and de-
creased E-cadherin (P = 0.001) compared to the untreated
control (Figure 5A - D).

4.4. Influence of Transforming Growth Factor-Beta 1-Pretreated
Wharton’s Jelly Mesenchymal Stem Cell Exosome on mRNA Ex-
pression and Protein Levels of Extracellular Matrix Components
in Activated Hepatic Stellate Cells

We used activated HSCs to evaluate the therapeutic ef-
fects of TGFβ1-pretreated WJ-MSCs exosomes in vitro. Un-
treated exosomes and TGFβ1-pretreated exosomes signifi-
cantly downregulated the p-Smad2/3 level (untreated exo-
some, 0.1, 0.5, and 1 ng/mL TGFβ1-pretreated exosomes: P
< 0.0001, 5 ng/mL TGFβ1-pretreated exosomes: P = 0.0001,
and 10 ng/mL TGFβ1-pretreated exosomes: P = 0.0021, Fig-
ure 5D). Exposure of activated HSCs to 50 µg/mL exosomes
for 24 hours (Exo group) decreased the mRNA expression
of α-SMA (P < 0.0001, Figure 4B) and collagen1α1 (P <
0.0001, Figure 4A) and increased the mRNA expression
of E-cadherin (P < 0.0001, Figure 4C). A low concentra-
tion of TGFβ1-pretreated exosomes of WJ-MSCs (0.1 ng/mL)
significantly decreased the expression level of ECM genes
(collagen1α1 and α-SMA; P < 0.0001, Figure 4A and B)
while significantly increasing E-cadherin expression (P <
0.0001; Figure 4C). Pretreated exosomes of WJ-MSCs with
low TGFβ1 concentration (0.1 ng/mL) were more effective
than untreated exosomes of WJ-MSCs (P < 0.05). There-
fore, TGFβ1-pretreated exosomes of WJ-MSCs (0.1 ng/mL)
decreased the ECM proteins by inhibiting TGFβ1/Smad sig-
naling in activated HSCs (Figure 5).
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Figure 2. Identification of phenotypes and differentiation of Wharton’s jelly mesenchymal stem cells (WJ-MSC). A, Identification of WJ-MSC phenotype. Immunophenotyping
of WJ-MSCs by flowcytometry. The cells expressed CD44 and CD105, but not CD34 and CD45; B, adipogenic differentiation potential of mesenchymal stem cells (MSCs). In
adipogenic differentiation, lipid droplets were stained with Oil Red O; C, osteogenic differentiation potential of MSCs. In osteogenic differentiation, the mineralized matrix
was stained with Alizarin Red S.

5. Discussion

Mesenchymal stem cells are activated in vivo by inflam-
mation and in vitro by pretreatment, to acquire the abil-
ity to suppress (36). Mesenchymal stem cells do not inher-
ently suppress the immune system but acquire this ability
when activated by inflammatory cytokines (37). They also
have immunoregulatory plasticity (7). These cells may ex-
ert inflammatory or anti-inflammatory functions based on
their microenvironments. In liver fibrosis, inflammatory
cytokines are present in the microenvironment (19). De-
pending on type and severity, these cytokines can manipu-
late the immunoregulatory properties of MSCs (36). One of
the crucial cytokines involved in liver fibrosis is TGFβ1 (38).
While TGFβ1 is a well-known immunosuppressive cytokine
(39), it is also a master driver in the inflammatory and fi-
brosis processes (40). In liver fibrosis, MSCs’ behavior may
change relative to the increasing amount of TGFβ1 (25, 27).
These changes consequently affect the communications of
MSCs with other cells in the liver, mainly through altering
MSC-secreted exosomes (8). Our study demonstrated that
WJ-MSCs-derived exosomes ameliorated fibrotic gene ex-
pression of activated LX-2 cells. We further delineated that
WJ-MSCs pretreatment with low-level TGFβ1 (0.1 ng/mL) sig-
nificantly intensified the effects of their derived exosomes
on fibrotic gene expression of activated LX-2 cells.

The activation of HSCs is the most profound event in
hepatic fibrogenesis, and in this event, TGFβ1/Smad sig-

naling is a pivotal player. Inflammatory cytokines, includ-
ing TGFβ1, through the phosphorylation of transcription
factor Smad, upregulate the expression of ECM proteins,
including collagen1α1, fibronectin, and α-SMA, leading to
liver fibrogenesis (26). Therefore, a therapeutic approach
to inhibit TGFβ1/Smad signaling may be an effective strat-
egy for treating hepatic fibrosis (19). Many clinical and ba-
sic studies have proven the beneficial effects of MSCs ther-
apy in liver fibrosis (21). In line with these findings, previ-
ous studies have shown that treating with human umbil-
ical cord MSCs significantly improved liver function and
hepatic fibrosis by inhibiting the paracrine TGFβ1/Smads
pathway (41). However, their clinical application is chal-
lenging due to storage limitations and cellular senescence
during in vitro proliferation (42, 43). Emerging evidence
revealed that MSC exosomes exerted the same therapeu-
tic effects as MSCs (44). Exosomes of MSCs show more bi-
ological functions than MSCs due to their higher stability
and plasma membranes, making them less susceptible to
disruption (45). Based on these findings, exosomes are a
cell-free treatment that may be safer than direct treatment
with MSCs and provide a potential method for tissue regen-
eration.

Thus, exosomes may be promising candidates for re-
gressing fibrogenic and inflammatory processes (46). Re-
cent studies have shown that priming MSCs with various
drugs, cytokines, or growth factors increases the therapeu-
tic efficacy of their exosomes (47). A study by Ghosh et
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Figure 3. Characterization of Wharton’s jelly mesenchymal stem cell exosome (WJ-MSC-Exo). A, transmission electron microscopy image of WJ-MSC-Exo to visualize the shape
and size of these vesicles (scale bar: 0.3 µm); B, the size distribution of WJ-MSC-Exo by Malvern zeta sizer; C, western blot analysis for CD9 and CD81 expression in WJ-MSC-Exo.

al. showed that pretreatment of BM-MSCs in mice with
TGFβ1 resulted in wound closure and healing in a syn-
geneic mouse wound model (48). In injury sites, TGFβ1
secretion is a critical way to utilize BM-MSCs, and TGFβ1
pretreatment may be an effective way to increase homing
and migration of BM-MSCs (31). In this study, we aimed
to modify the immunosuppressive abilities of WJ-MSCs ex-
osomes by treating these cells with TGFβ. Our results
showed that exosomes derived from untreated WJ-MSCs
could regress TGFβ-Smad signaling and expression of fi-
brotic markers in activated LX-2 cells. However, these ef-

fects were significantly profound with applying exosomes
derived from 0.1 ng/mL TGFβ-pretreated WJ-MSCs. These re-
sults suggest that low levels of TGFβ may increase the anti-
fibrotic capacity of WJ-MSCs-derived exosomes. Jiang et
al.’s study showed that low concentrations of TGFβ1 in CD18
-/- wounds stimulated the secretion of TGFβ1 from MSCs,
increasing myofibroblast differentiation, wound contrac-
tion, and vascular formation (49). In contrast, high levels
of TGFβ1 may inhibit TGFβ1 production (49).

In this study, the expression level of p-Smad2/3 was re-
duced in TGFβ1-pretreated exosomes of WJ-MSCs. Also, this
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Figure 4. Effect of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) (untreated and pretreated) and their exosomes on the expression of fibrotic markers in transforming
growth factor-beta 1 (TGFβ1)-activated LX-2 cells using RT-qPCR. The cells in the control group received no treatment; TGFβ1 group: Hepatic stellate cells (HSCs) cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM) with 10 ng/mL TGFβ1 for 72 hours, exo group: HSCs cultured in DMEM with 10 ng/mL TGFβ1 for 72 hours, followed by exposure
to 50 µg/mL exosomes for 24 hours; pretreated exo group: HSCs cultured in DMEM with 10 ng/mL TGFβ1 for 72 hours, followed by 24 hours exposure to 50 µg/mL of different
concentration of exosomes (0.1, 0.5, 1, 5, and 10 ng/mL) derived from TGFβ1-pretreated WJ-MSCs. The relative expression of each gene was normalized to that of controls. All
data are shown as means ± standard error of means (SEM). Statistical significance at * P < 0.05, ** P < 0.01, and *** P < 0.001.

study showed that by exposing WJ-MSCs to inflammatory
conditions, TGFβ1-pretreated WJ-MSCs-Exo showed more
protective effects in activated HSCs than untreated WJ-
MSCs-Exo. Lynch et al. showed that pretreatment of mouse
MSCs with TGFβ1 significantly modulated the inflamma-
tory phenotype (36). Transforming growth factor-beta 1-
pretreated MSCs prolonged graft survival in the mouse

model of corneal transplantation. One of the therapeutic
effects of MSCs is related to Smad2/3 phosphorylation (36).

In the present study, E-cadherin mRNA expression
and protein levels showed the highest upregulation in
response to the lowest concentration of TGFβ1-pretreated
WJ-MSCs-Exo (0.1 ng/mL) compared to the untreated WJ-
MSCs-Exo group. Cadherins mediate cell-cell adhesion
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Figure 5. Effect of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) (untreated and pretreated) and their exosomes on the expression of fibrotic markers and phosphoryla-
tion Smad2/3 in Transforming growth factor-beta 1 (TGFβ1)-activated LX-2 cells using western blot. The cells in the control group received no treatment; TGFβ1 group: Hepatic
stellate cells (HSCs) cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10 ng/mL TGFβ1 for 72 hours; exo group: HSCs cultured in DMEM with 10 ng/mL TGFβ1 for
72 hours, followed by exposure to 50 µg/mL exosomes for 24 hours; pretreated exo group: HSCs cultured in DMEM with 10 ng/mL TGFβ1 for 72 hours, followed by 24 hours
exposure to 50 µg/mL of different concentrations of exosomes (0.1, 0.5, 1, 5, and 10 ng/mL) derived from TGFβ1-pretreated WJ-MSCs. The relative expression of each gene was
normalized to that of control. All data are shown as means ± standard error of means (SEM). Statistical significance at * P < 0.05, ** P < 0.01, and *** P < 0.001.

Hepat Mon. 2022; 22(1):e123416. 9



Salehipour Bavarsad S et al.

(50). This study also demonstrated that a low concen-
tration of TGFβ1-pretreated WJ-MSCs-Exo (0.1 ng/mL)
decreased the mRNA and protein expression level of
ECM components, including α-SMA and collagen1α1.
The RT-PCR results showed that the expression levels of
collagen1α1 and α-SMA were decreased by 0.1 ng/mL TGFβ1
in activated HSCs.

However, the action mechanism of low concentrations
of TGFβ1-pretreated WJ-MSCs-Exo in activated HSCs has
not been fully elucidated. It is hypothesized that TGFβ1-
pretreated WJ-MSCs-Exo may act in different signaling
pathways in activated HSCs in a concentration-dependent
manner. In this study, we observed the dose-response ef-
fects of TGFβ on WJ-MSCs-derived exosomes. While WJ-
MSCs derived exosomes conditioned with a low concen-
tration of TGFβ (0.1 ng/mL) exerted maximum inhibitory
effects on TGFβ-Smad signaling and fibrotic gene expres-
sion of activated LX-2 cells, these inhibitory effects became
weaker with increasing concentrations. There are dis-
crepant conclusions about the results of TGFβ priming on
MSCs. Despite the critical role of TGFβ in the modulation
of the immunosuppressive ability of MSCs (27), there are
conflicting arguments among researchers. Li et al. demon-
strated the immunosuppression potential of TGFβ1 over-
expressed MSCs on co-cultured T lymphocytes (51). Con-
versely, Xu et al. showed that TGFβ could decrease the
immunosuppression capacity of MSCs (52). Our findings
showed that it might be related to the dose-dependent re-
sponse of WJ-MSCs to TGFβ. However, it remains challeng-
ing to prepare MSCs in vitro and transfer them to a dam-
aged site in vivo with high efficacy (53).

5.1. Conclusions

Exosomes derived from untreated WJ-MSCs could
regress TGFβ-Smad3 signaling and expression of fibrotic
markers in activated LX-2 cells. However, these effects
were significantly profound with applying exosomes
derived from 0.1 ng/mL TGFβ-pretreated WJ-MSCs. We also
observed the dose-response effects of TGFβ on WJ-MSCs-
derived exosomes. Therefore, exosomes derived from
TGFβ-pretreated WJ-MSC may be critical in improving
fibrosis and benefit liver fibrosis patients.
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