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Abstract

Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. The current remedies for cancer,
including chemotherapy and radiation therapy, might damage patients’ organs, sometimes causing death. Etoposide (ETO), as a
widely used chemo-drug, possesses the same problems. For years, combinational therapy has been considered a potential adjustor
for common treatments, alleviating their side effects. Quercetin (Que), a phytochemical drug, has been used due to its potential
against cancer.
Objectives: This study explored whether synergy occurs between Que and ETO on the apoptosis of HepG2 HCC cells or not.
Methods: The impacts of the drugs on cell growth were assessed through the MTT assay. The apoptotic death rates of treated cells
were examined through Annexin/PI double staining and caspase-9 and caspase-3 activities. The relative expression of B-cell lym-
phoma 2 (Bcl-2) associated X-protein (Bax), and Bcl-2 genes and proteins were analyzed using quantitative reverse transcription
polymerase chain reaction and western blot analysis. Additionally, the levels of p53 protein were determined.
Results: Both Que and ETO reduced the cell viability and increased apoptotic rates, caspases activities, Bax gene and protein expres-
sion, and the p53 protein levels of HepG2 cells. The combination of Que and ETO showed apparent synergy in terms of cell growth
and cell apoptosis. Que significantly enhanced the effects of ETO on caspase activities, Bax and Bcl-2 genes’ expression, and p53
protein levels.
Conclusions: The obtained results demonstrated that Que showed synergy when co-treated with ETO on HepG2 cells. Therefore, it
is concluded that further studies on the aforementioned combination could lead to a potential anticancer compound against HCC.
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1. Background

Liver cancer is known as one of the most malignant
cancers, with 905000 new cases and 830000 deaths in
2020 worldwide, making it the seventh most common and
the second most lethal cancer globally. Hepatocellular car-
cinoma (HCC), comprising 75 - 85% of all liver cancer cases,
is the dominant form of liver cancer (1). The major risk fac-
tors of HCC include hepatitis B virus, hepatitis C virus, dia-
betes, obesity, and alcohol, making HCC more common in
less developed regions of the world (1, 2).

Liver tumor cells possess very efficient resistance
mechanisms against drugs; therefore, chemotherapy, as
the most applied treatment for cancer, has limited usage
against HCC (3). Consequently, three types of surgery, in-

cluding liver transplantation, liver resection, and liver ab-
lation, comprise the most effective treatments for HCC,
none of which offers a permanent treatment, and each pos-
sesses its own limitations (4). Despite the limited usage
of chemotherapy, certain drugs, such as etoposide (ETO),
are found to be influential against HCC (3, 5). Etoposide,
a plant-based anticancer agent, halts cancer cell growth
and causes cell death through binding to deoxyribonucleic
acid (DNA) and to topoisomerases II enzyme resulting in
preventing DNA double-strand reconnection (6, 7). As ETO
brings about several side effects on patients, seeking novel
methods, such as combinational therapy, is considered a
way to reduce its adverse effects while simultaneously en-
hancing its antitumor impacts (8).

As a tumor suppressor, p53 plays important roles in
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cell cycle regulation, DNA repair, and apoptosis induction;
however, the damaged DNA is not fixed (9, 10). The p53 mu-
tation is observed in about 50 - 60% of all cancers, includ-
ing HCC, which are either gain of function or loss of func-
tion mutations, both of which could lead to tumorigene-
sis (11). In addition, it is observed that the p53 gene mu-
tations enhance the chemo-resistance of liver cancer cells
(12). Therefore, it is necessary to monitor the p53 status
when studying cancer.

Plant-derived compounds, such as polyphenols, attract
much attention regarding their ability to ameliorate dis-
eases, such as cardiovascular diseases (CVDs), neurodegen-
erative diseases, and cancers (13-15). Quercetin (Que) is the
most abundant flavonoid from the large polyphenol fam-
ily that has shown anticancer effects. Regarding recent
studies, Que induces apoptosis and inhibits the prolifera-
tion and migration of different cancer cell lines (16). The
main pathways affected by Que are extracellular signal-
regulated kinase 1/2 (Erk1/2), phosphatidylinositol 3-kinase
(PI3K), and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) pathways all of which have signif-
icant roles in the expression of numerous cancer-related
genes (17-19). It is believed that Que performs its anticancer
effects through its antioxidant and anti-inflammatory ac-
tivities (20, 21). Although Que has been frequently studied,
the effects of Que in combination with ETO on the HCC cell
line are yet to be inspected.

2. Objectives

This study aimed to investigate the effects of the com-
bination of Que and ETO on apoptosis induction and on the
expression of p53 protein in the HCC cell line.

3. Methods

3.1. Cell Culture and Reagents

The HCC HepG2 cell line, purchased from Pasteur Insti-
tute (Tehran, Iran), grows properly in Dulbecco’s modified
eagle’s medium (DMEM) culture medium, containing 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin
antibiotics. However, one day before the assay started, it
was replaced with a fresh medium, excluding FBS. Cell in-
cubation was performed at 37°C and 5% CO2. Que pow-
der was bought from Sigma Aldrich (United States) and
was solved into dimethyl sulfoxide (DMSO) immediately
before treatment. The concentration of DMSO in the cell
culture medium was constantly maintained below 1% (V/V)
to avoid any adverse effects on cell viability. To obtain
the desired concentration, the Que solution was diluted in
DMEM.

3.2. Cell Viability (MTT) Assay

In this study, 104 HepG2 cells were seeded into 96-
well plates and were incubated overnight (37°C). Over
the following day, the culture medium for both cell lines
was altered with a medium containing Que (25, 50, and
100 uM). The medium was then eliminated, and the
medium containing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) solution was added to the
cells for 4 hours. Afterward, the MTT-containing medium
was changed with 150 mL DMSO added to each well seeded
with cells and shaken until the formazan crystals were
solved entirely. The optical density for each well was read
in 570 nM. The cells were treated with Que for time courses
of 24, 48, and 72 hours for this experiment. The results were
then converted to the %viability of cells.

3.3. Relative Gene Expression Determination (Quantitative Re-
verse Transcription Polymerase Chain Reaction)

Total ribonucleic acid (RNA) isolation was performed
from 1 million cells cultured in 6-well plates using a Yekta
Tajhiz Azma RNA extraction kit (Iran). The concentration
and the purity of the final isolate were determined us-
ing Nanodrop 2000 instrument (Thermo Fisher Scientific,
Wilmington, DE, United States), and its integrity was ex-
amined through 1.5% agarose gel electrophoresis. The
RNA isolates were then utilized for complementary DNA
(cDNA) synthesis, using Yekta Tajhiz Azma cDNA synthe-
sis kit, with the final reaction volume of 20 µL. The final
cDNA products were stored at -70°C. The relative expres-
sion of B-cell lymphoma 2 (Bcl-2) associated X-protein (Bax)
and Bcl-2 genes were assessed through quantitative reverse
transcription polymerase chain reaction (PCR), utilizing
Amplicon SYBR green kit (Thermo Fisher Scientific, USA),
with glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
as the internal reference gene and the final volume of 20
µL. The QuantStudio 3 Applied Biosystems (Massachusetts,
United States) PCR instrument performed the reaction
steps. The sequences of specific primer pairs, newly de-
signed for this study, are as follows:

Bax (F: 5′-CAGGGGCCCTTTTGCTTCA-3′, R: 5′-
ACGGCGGCAATCATCCTCT-3′).

Bcl-2 (F: 5′-GGATAACGGAGGCTGGGATG-3′, R: 5′-
TGACTTCACTTGTGGCCCAG-3′).

GAPDH (F: 5′-ACCCTTAAGAGGGATGCTGC-3′, R: 5′-
CCCAATACGGCCAAATCCGT-3′).

3.4. Western Blot Analysis

Equal amounts of protein were collected from cell
extracts previously homogenized with RIPA buffer (con-
taining HEPES, NaCl, EDTA, and Triton X100) and sepa-
rated through sodium dodecyl-sulfate-polyacrylamide gel
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electrophoresis. The proteins were then transferred to a
polyvinylidene difluoride membrane and closed by skim
milk-containing tris-buffered saline with 0.1% Tween® 20
detergent for an hour (25°C). Utilizing specific primary
antibodies against Bax, Bcl-2, and p53 (all obtained from
Cell Signaling, Danvers, Massachusetts, United States) with
incubation at 4°C overnight and secondary antibodies at
room temperature for an hour, western blotting was con-
ducted. The bands were visualized using an enhanced
chemiluminescence system and finally quantified using
Image J software (version 1.52). The normalization of pro-
tein levels was performed with β-actin as the control.

3.5. Flow Cytometry

Annexin V-FITC/PI kit (IQ Products, Groningen, Nether-
lands) was utilized to carry out apoptosis assay. Briefly, the
cells were centrifuged, and the cell pellet was suspended
in calcium buffer with Annexin V-FITC and incubated at
4°C for 20 minutes. Afterward, the previous buffer was dis-
carded, the same buffer containing PI was added to the
cells, and incubation was performed at 4°C for 10 minutes.
The samples and the subsequent data were analyzed using
a flow cytometer (Becton, Dickinson, San Jose, CA, United
States) and FlowJo software (version 10).

3.6. Caspase-3 and Caspase-9 Activities

The activities of caspase-3 and caspase-9 were mea-
sured through the incubation of the lysates of Que-treated
cells with colorimetric substrates for an hour and, finally,
the evaluation of the absorbance, caused by the cleavage of
the substrate through caspases activities, at 405 nm.

4. Results

4.1. Indication of Synergy by Que and ETO on the Inhibition of
HepG2 Cell Growth

Originally, to obtain the optimal concentration for
each drug, this study examined the HepG2 cell growth
when treated with Que and ETO individually through the
MTT assay. The initial concentrations of ETO were 25, 50,
and 100 µM. The initial concentrations of Que were 10,
20, and 40 µM. Concerning the results, both Que and
ETO showed dose-dependent and time-dependent behav-
iors on cell growth. The current study’s results showed
that in 24 hours, the only effective dose for Que was 100
µM; nevertheless, the 50 µM dose was appended in 48
hours, and all doses showed significant effects on cancer
cell growth in 72 hours. Moreover, 100 µM was the concen-
tration of Que with the highest inhibitory effects on can-
cer cells (32% growth inhibition in 72 hours) (Figure 1A).

The 10 µM concentration of ETO showed no significant ef-
fects on cell growth in either of the time courses; how-
ever, the 20 and 40 µM doses both significantly reduced
the cancer cell growth in all time periods (Figure 1B). It is
worth mentioning that no concentration of Que and ETO
reached 50% growth inhibition (i.e., the half maximal in-
hibitory concentration). The 10 µM concentration of ETO
was selected for combination with 25, 50, and 100 µM of
Que. All combinations decreased cancer cell growth higher
than ETO alone, with the combination of Que 100 µM and
ETO 10µM presenting the highest effect (Figure 2). Accord-
ing to combination indices, Que showed synergy with ETO
through all present concentrations. However, the combi-
nation showing the lowest combination index (0.48), com-
prising the most and least effective concentrations of Que
(100µM) and ETO (10µM), respectively, was selected for the
rest of the experiments (Table 1).

4.2. Potentiation of Effect of ETO by Que on HepG2 Cell Apoptosis
Induction

The effects of Que and ETO on the apoptosis rates of
HepG2 cells were examined through two tests, flow cytom-
etry and caspase-9 and caspase-3 activity assay. Through
Annexin/PI double staining, it was observed that both Que
and ETO could increase the programmed death rates of the
investigated cells individually, with Que raising it to 11.8%
and ETO to 16.9%. Furthermore, after treatment with the
Que + ETO combination, the rate of programmed cell death
reached 26.9%, showing synergy between Que and ETO ac-
tivities. Figure 3A and B illustrates the obtained results in
this regard. Regarding caspase-9 activity, the individual
concentrations of Que and ETO showed 49% and 54% ac-
tivity, respectively; nevertheless, with the Que + ETO com-
bination, the caspase-9 activity exceeded 86% (Figure 4A).
In addition, both Que and ETO alone enhanced the activ-
ity of caspase-3 to 37% and 48%, respectively. As observed
in Figure 4B, through exposure to the Que + ETO combina-
tion, the caspase-3 activity underwent a further enhance-
ment and reached 79%.

4.3. Increase in Bax and Reduction of Bcl-2 Gene Expression and
Protein Levels by ETO + Que Combination

Through real-time PCR, it was observed that the Que +
ETO combination adjusted the expression of Bcl-2 and Bax
genes toward the promotion of apoptotic cell death. The
present study’s results showed that both Que and ETO in-
dividually increased the gene expression of Bax to 1.89 and
2.6 folds, respectively; however, the combination showed a
further effect on the Bax gene, increasing its expression to
3.9 folds (Figure 5A). Conversely, Bcl-2 expression declined
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Figure 1. Evaluation of impacts of quercetin and etoposide on the growth of HepG2C through MTT assay; A, treatment of HepG2 cells with three bottom-up concentrations of
quercetin for 24, 48, and 72 hours; B, treatment of HepG2 cells with three bottom-up concentrations of etoposide for 24, 48, and 72 hours (ns: Not significant; * P < 0.05, ** P <
0.01).

to 0.68 and 0.61 folds after treatment with Que and ETO, re-
spectively; nonetheless, it was lowered to 0.46 folds when
exposed to the Que + ETO combination (Figure 5B). The lev-
els of Bax protein were elevated to 2.85, 1.98, and 4.81 folds,

with the treatment of Que, ETO, and the ETO + Que combi-
nation, respectively. Additionally, it was observed that the
rise in Bax protein levels caused by the ETO + Que combina-
tion was significantly higher than the ETO treatment alone

4 Hepat Mon. 2023; 23(1):e136194.



Aslani F et al.

100

75

50

25

0

ns

C
el

l v
ia

b
il

it
y 

(%
o

f c
o

n
tr

o
l)

25 50 100

HepG2 (72h)

Figure 2. Comparison of effects of quercetin and etoposide to etoposide alone on the growth of HepG2 cells through MTT assay; treatment of cancer cells with 10 µM of
etoposide combined with 25, 50, and 100 µM of quercetin for 72 hours (ns: Not significant; * P < 0.05, ** P < 0.01 compared to control).

Table 1. Combination Index Between Quercetin and Etoposide in HepG2 Cells a

Quercetin (25 µm) Quercetin (50 µm) Quercetin (100 µm)

Etoposide (10 µm) 0.93 0.76 0.48

a HepG2 cells were incubated with 10 µM of etoposide and various concentrations of quercetin. The combination index (CI) was calculated by CompuSyn software
(version1.0.1). CI < 1.0, CI = 1.0, and CI > 1.0 represent synergism, an additive, and antagonism, respectively.

(Figure 6A and B). Que decreased the protein levels of Bcl-
2 to 0.48 folds; nevertheless, ETO demonstrated no signifi-
cant effects on this protein at all. Furthermore, the ETO +
Que combination reduced the Bcl-2 protein expression to
0.26 folds, showing a significant reduction, compared to
the untreated control and ETO-treated groups (Figure 6A

and C).

4.4. Synergistic Increase of p53 Protein Levels by ETO + Que Com-
bination

This study further explored the effects of Que and ETO
on the apoptosis induction of HepG2 cells by evaluating

Hepat Mon. 2023; 23(1):e136194. 5
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Figure 3. Effects of quercetin and etoposide on the apoptosis of HepG2 cells through flow cytometry; A, flow cytometry plot of the effects of quercetin and etoposide individ-
ually and in combination on the HepG2 cell death; B, columnar plot of flow cytometry for quercetin and etoposide (* P < 0.05, ** P < 0.01 compared to control; ## P < 0.01
compared to etoposide alone).
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Figure 4. Activities of caspases in HepG2 cells treated with quercetin and etoposide; A, caspase-9 activity in HepG2 cells after treatment with quercetin and etoposide alone
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Figure 5. Effects of quercetin and etoposide on the relative expression of apoptosis-related genes in HepG2 cells; A, Bcl-2 associated X-protein (Bax) relative gene expression in
HepG2 cells treated with quercetin and etoposide alone and in combination; B, B-cell lymphoma 2 (Bcl-2) relative gene expression in HepG2 cells treated with quercetin and
etoposide alone and in combination; (* P < 0.05, ** P < 0.01, *** P < 0.001 compared to control; ## P < 0.01 compared to etoposide alone).

the p53 protein levels. The obtained results showed that
exposure to both Que and ETO alone leads to a significant
rise in the tumor suppressor p53 protein level in the stud-
ied cells. Specifically, in a close manner, Que and ETO pro-
moted the p53 levels to 2.7 and 2.9 folds, respectively. Fi-
nally, as apparent in the current study’s results, Que poten-
tiated the effect of ETO on the protein expression of p53,
causing a rise of 3.65 folds in the tumor suppressor’s pro-
tein levels. Figure 6A and D depicts the results of p53 pro-
tein expression.

5. Discussion

Cancer therapy has been a constant challenge for hu-
manity, especially for cancer researchers. There are virtu-
ally as many cancers as organs in the human body, any
of which has its own characteristics and behavior and its
unique treatment (1). The HCC, the most common type
of liver cancer, is known for its progressiveness, lethal-
ity, and resistance to common cancer therapies (1, 22, 23).
Chemo-resistant and radiation-resistant cancers, through
specific procedures, develop resistance against different
drugs, minimizing the impacts of the therapy (24). In
these cases, the implemented drug doses gradually fail,
and higher doses are required, leading to extra side ef-
fects (25). Therefore, it is logical to find supplementary
therapies with minimum adverse side effects and, at the

same time, capabilities against cancer (26). Among numer-
ous plant-based compounds, polyphenols attract greater
attention by affecting the treatment of CVDs, Alzheimer’s
disease, and cancers (27-29).

As a programmed and modifiable cell function, apop-
tosis plays an important role in the life cycle of a single
cell and the wellness of the whole organism (30). Numer-
ous prominent proteins, such as p53, c-Myc, tumor necro-
sis factor (TNF) family, Fas, Bcl-2 family, mitogen-activated
protein kinase family, NF-kB, and caspase family, function
inside or outside a cell, playing significant roles in the pre-
vention, induction, or regulation of apoptotic cell death,
showing the importance of this cancer-preventive cellular
function (31, 32). Bax and Bcl-2 are two important mem-
bers of the Bcl-2 family, where the former plays an anti-
apoptotic role, and the latter is pro-apoptotic (33-35). The
diversity of apoptosis-related genes leads to the count-
less ways of apoptosis malfunction, such as mutations or
hyperactivity of anti-apoptotic factors and deficiency in
pro-apoptotic factors, through which cancer cells develop
mechanisms to excess their survival limit or obtain the
ability to recurrently proliferate, even upon a defective
DNA (36-39).

Que, a flavonol member of the polyphenol substances
family, plays roles in cellular functions, including anti-
inflammatory, antioxidant, pro-apoptotic, and, generally,
anticancer activities (40-42). Quercetin’s anti-proliferation
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Figure 6. BAX, BCL2, and p53 protein levels in HepG2 cells treated with quercetin and etoposide; A, western blot gel image of the effects of quercetin and etoposide on BAX,
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alone).

and pro-apoptotic abilities have been studied in different
cancers, presenting its relationship with various cellular
apoptosis-related factors, such as Erk1/2 pathways, NF-kB,
and TNF-α (43, 44). Furthermore, it has been shown that
Que shows its effects by enhancing the antitumor effects
of common cancer drugs, such as 5-fluorouracil and cis-
platin (45, 46). Compounds possessing such abilities pro-
duce major benefits since they help minimize the side ef-
fects of chemotherapeutics, maximize the suppressive ef-
fects of the chemo-drug on tumor cells, and efface po-
tential chemo-resistance in cancer cells (47, 48). There-
fore, the present study investigated whether Que shows

any synergy with the widely used chemotherapeutic ETO
on the apoptosis induction and reduction of HepG2 cell
survival. According to the MTT assay, the effects of both
Que and ETO on the cell viability of HepG2 are time- and
dose-dependent, where in 72 hours, even the lowest con-
centration of Que affected the cancer cell viability signifi-
cantly, suggesting a rather high half-time for Que in can-
cer cells. Additionally, the present study’s results, simi-
lar to a previous study, showed that Que could enhance
the anti-proliferative activities of ETO on the HepG2 cancer
cells. Different mechanisms have been referred to as the
apoptosis-inducing ways of Que.
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Catanzaro et al. and Suh et al. both suggested that
Que induces cancer cell apoptosis through cell cycle arrest
in G2/M and G0/G1 phases, respectively (49-51). Further-
more, the results of the studies by Shen et al. and Li et
al. have shown that Que induces the mitochondrial path-
way of apoptosis by altering the PI3K/Akt and NF-kB path-
ways alone and in combination with chemotherapeutics
(52, 53). The current investigation explored the rates of
apoptotic cell death under treatment with Que and ETO
alone and in combination and its potential relationship
with the tumor suppressor p53. It was observed that not
only Que promoted cancer cell apoptosis alone, but also it
increased the effects of ETO on the apoptosis of cancer cells
in a synergistic manner. The results of the apoptosis assay
were reflected in the caspase-3 and -9 activity assays and in
the Bax and Bcl-2 genes’ expression, where the significant
rise in both caspases’ activities, the Bax gene expression,
and the down-regulation of the anti-apoptotic Bcl-2 gene
altogether pointed at ETO and Que as effective drugs for the
induction of HepG2 cell apoptosis.

The apoptotic cell death of ETO + Que-treated cells ex-
perienced a rise of 24.07%, compared to the control group,
proving that the activities of ETO on HepG2 cells were sig-
nificantly enhanced when combined with Que. However,
with the assessment of Bax and Bcl-2 gene expression, it
is not believed that it showed any effects of the two fac-
tors on cancer cell apoptosis, given the diverse events that
might occur between gene expression and protein transla-
tion, particularly in an apoptotic cell (54). Therefore, the
current study assessed the expression of Bax and Bcl-2 pro-
teins to evaluate the possibility of any connection between
these factors and the cancer cell apoptosis induced by the
drugs.

The present study showed that the treatment with the
combination of ETO + Que led to an elevation in Bax protein
level while reducing the expression of Bcl-2 protein, both
of which were statistically significant. With the positive re-
lation between the apoptosis of cancer cells and the expres-
sion of Bax protein, it is apprehended that the effects of the
ETO + Que combination could be exerted through the fluc-
tuations of Bcl-2 family members. However, further studies
are needed to investigate the exact mechanisms.

The role of p53 has been investigated in numerous can-
cer studies, where it is clarified that p53 is a major inducer
of apoptosis in defected cells. It has been shown that p53
possesses the ability to induce DNA repair, initiate cell cy-
cle arrest, promote cellular senescence, and even induce
cell apoptosis by multiple important targets, such as DNA
damage response (DDR), p53 upregulated modulator of
apoptosis (PUMA), and TP53-inducible glycolysis and apop-
tosis regulator (TIGAR), regulating the activities of major

cellular factors and processes, such as Bcl-2, Bax, cyclin-
dependent kinases, and generally, cell apoptosis (9, 55).
Many different defects in cellular processes could lead to
p53 activation; however, the high percentage of p53 mu-
tations in different types of cancer prevents it from per-
forming its proper roles in cancerous cells, leaving the cell
vulnerable to multiple defects in DNA and other critical
parts, without any proper repair (56-58). In the current
study, it was shown that p53 protein levels were signifi-
cantly elevated after treatment with both Que and ETO for
72 hours. In HepG2 cells treated with the Que + ETO com-
bination, p53 protein expression underwent even higher
promotion, becoming 0.95 and 0.75 folds higher than Que-
treated and ETO-treated cells, respectively. The aforemen-
tioned results suggest that the higher apoptosis rates in
Que + ETO-treated cells could have occurred through p53
resurrection, leading to higher Bcl-2 gene expression and
more caspase activities, driving the cancer cells toward a
programmed cell death (Figure 7).

Based on the present study’s results, it was shown that
Que, as a natural substance, possesses great abilities in HCC
cell apoptosis induction and cancer cell growth reduction.
However, the more important results come from the com-
bination of Que and ETO, where according to the present
study’s results, it enhances every aspect of ETO’s activities
regarding apoptosis induction. Based on the aforemen-
tioned results, it is recommended to further investigate
the Que + ETO combination as a potentially suitable ther-
apy for HCC in vitro and in vivo.
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Figure 7. Schematic presentation of apoptosis pathways in HepG2 cells treated with quercetin and etoposide quercetin and etoposide induce apoptosis in HepG2 cells by
promoting p53 protein levels, increasing Bcl-2 associated X-protein (Bax) gene expression, and finally enhancing the activities of effector caspases, such as caspase-3.
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