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The Role of Anesthetic Drugs in Liver Apoptosis
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Context: The modern practice of anesthesia is highly dependent ona group of anesthetic drugs which many of them are metabolized in 
the liver.
Evidence Acquisition: The liver, of course, usually tolerates this burden. However, this is not always an unbroken rule. Anesthetic induced 
apoptosis has gained great concern during the last years; especially considering the neurologic system.
Results: However, we have evidence that there is some concern regarding their effects on the liver cells. Fortunately not all the anesthetics 
are blamed and even some could be used safely, based on the available evidence.
Conclusions: Besides, there are some novel agents, yet under research, which could affect the future of anesthetic agents' fate regarding 
their hepatic effects.
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Implication for health policy/practice/research/medical education:
This article discusses the implications of anesthetic agents used clinically worldwide; their effects on the hepatic cells especially their role on hepatic 
cell apoptosis is discussed and some of the new anesthetic agents with less untoward effects are discussed more; also, some of the drugs under further 
research with anesthetic properties and less apoptotic effects are presented. The target readers are anesthesiologists, gastroenterologists physiologists 
and pharmacologists.
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1. Context
Anesthesia is a modern human invention which was 

clinically introduced for the first time in October 1846 
by William Morton, though the clinical effects of nitrous 
oxide had been discovered in 1844 (1).The introduction 
and utilization of anesthetic drugs has passed a long way, 
introducing newer generations of more effective drugs 
with less unwanted side effects; however, this process is 
not completed yet and the available anesthetic agents 
have their current side effects of course with a very low 
incidence (2).Liver is one of the main body organs per-
forming drug metabolism among its many specific and 
unique functions. However, drug detoxification would 
create a spectrum of biochemical by-products imposed 
to the liver cells; while many pharmaceuticals, includ-
ingmost anesthetics, are metabolized, totally or partially, 
in the liver. This is why the cellular mechanisms for liver 
injury have a great impact in development and introduc-
tion of newer and more "liver friendly" anesthetic drugs.

Hepatic cells -during their metabolic functions- con-
tinuously produce reactive oxygen species. Reactive 
oxygen species are reduced to other forms of oxygen by 
mitochondria; this process may be deficient innonheal-
thyliver or when the liver is exposed to an extraordinary 
unwanted burden of toxins ( 3 - 6 ). This oxidant damage 
would disturb many parts of the cell structure in hepa-

tocytes. Apoptosis (and not necrosis) is the main mecha-
nism of liver injury, especially after drug related -includ-
ing anesthetics- or viral injuries ( 6 - 14 ) at times ending 
in massive apoptosis ( 10 ). Apoptosis (programmed cell 
death) could be induced in two ways: intrinsic and extrin-
sic ( 9 , 11 ). Although both of pathways resulted in similar 
consequence (elimination of stressed cells), the initia-
tion mechanisms are different. Intrinsic factors such as 
lack of growth mediators, DNA damage and cytoplasm 
detachment could accumulateproapoptoticmembers of 
Bcl-2 family (Bax and Bak) in mitochondrial membrane ( 
4 , 9 , 10 , 15 , 16 ). This phenomenon could increase mi-
tochondrial permeability and accomplish with displace-
ment of cytochrome c and certain proapoptotic proteins 
from mitochondria to cytoplasm. These mediators acti-
vate caspases 9 ( 17 - 19 ) and other subsequent caspases 
( 6 , 8 , 20 - 24 ). These enzymes induce DNA fragmenta-
tion, plasma membrane blebbing which finally result in 
formation of apoptotic bodies ( 7 , 20 ). Extrinsic pathway 
could be triggered by involvement of cell surface recep-
tors which are consisted of a broad spectrum of death re-
ceptorsespeciallyFas (CD95) and TNF-RI ( 3 - 6 , 9 , 13 , 15 , 23 
- 31 ). Activation of death receptors by related ligands in-
duces recruitment of cytoplasmic adaptor proteins such 
as TRADD (TNF receptor-associated death domain) and 
FADD (Fas-associated death domain). This signal trans-
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duction would result in caspase 8 and subsequent cas-
cade of caspases activation ( 4 , 15 , 17 , 18 , 23 , 24 , 28 , 29 ). 
Apoptotic bodies which formed after terminal activation 
of caspase 3 in both pathways are cleared by phagocytes 
without inducing inflammation ( 9 ). Liver cell structure 
remains the main location for the above interactions in-
cluding the Kupffer cells, dendritic cells, natural killer 
(NK) cells, NKT cells, neutrophils, mast cells and T cells ( 4 
, 12 - 14 , 16 , 27 , 32 - 38 ). The final fate of apoptosis cascade 
is determined by interaction between proapoptotic and 
antiapoptotic proteins in Bcl-2 family in cell structure 
(Figure 1) ( 4 , 9 , 15 , 23 , 32 , 39 , 40 ). 
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Figure 1. A General Schematic Presentation of the Apoptosis Pathway

2. Evidence Acquisition

2.1. The Effect of Anesthetic Drugs on Hepatic Apop-
tosis

During the recent years, it has been demonstrated in 
a great number of studies that most current anesthetic 
agents such as intravenous anesthetic agents (like ket-
amine, barbiturates, propofol, midazolam, diazepam, 
clonazepam), volatile agents (like halothane, isoflurane, 
desflurane, sevoflurane), xenon and even, muscle relax-
ants have been labeled as having apoptotic properties in 
animal studies, exerting their effect in a dose-dependent 
manner which its effects would be created as "time-de-
pendent neurodegenerative effects especially in the de-
veloping animal brain"; while, a number of other stud-
ies have claimed these agents as being neuroprotective 
which preserve the brain tissue from unwanted adverse 
effects, like "apoptosis, degeneration, inflammation and 
energy failure"; however, one important point is that 
nearly all of these results are from animal models since 
performing such studies on the human brain is not an 
easy task (41-43). Sufficient proof (especially regarding 
lab evidence) for occurrence of neuroapoptosis in the de-

veloping brain is scarce yet, and the results gained from 
nearly all of the human studies demonstrate "associative, 
not causal relationships" (41, 42). This mandates further 
research clearing the possibility of previous animal find-
ings in human.

On the other hand, there is a widespread research on the 
role of anesthetic agents in neuroapoptosis (41), mainly 
focusing on the neonatal brain; however, the possible 
role of anesthetic agents in liver apoptosis is not very 
clear yet and also, would it be real, it is not age limited as it 
is seen in neonatal apoptosis. Previous assessments have 
demonstrated that the deeper the level of anesthesia, the 
more severe the resultant neuroapoptosis; for example, 
a combined "nitrous oxide and isoflurane, or ketamine 
and propofol" would result in much severe neuroapop-
tosis compared toany single anesthetic administered 
alone (44).The anesthetic agents are many and diverse; 
however, according to a general classification used in 
many anesthesia texts and also, in this manuscript, the 
anesthetics could be classified as 4 groups according to 
their anesthetic function: hypnotics, analgesics, amnes-
tic agents, and muscle relaxants.

3. Results

3.1. Hypnotics
The hypnotic agents with apoptotic activity could be 

classified as two main groups: N-methyl-D-aspartate 
(NMDA) antagonist, like ketamine; and gamma-amino-
butyric acid (GABA) receptor agonists, like propofol or 
thiopental (45-50). Of course, hypnotic agents and am-
nestic agents have some overlapped clinical use; but we 
have discussed them under two different subtitles.

a)Ketamine: Among the intravenous hypnotics, there 
are many studies discussing the apoptotic effects of ket-
amine; especially potentiating hepatic apoptosis. Among 
all the proposed mechanisms for ketamine apoptosis, 
the most main ones are “up-regulation of NMDA recep-
tors causing overestimation of glutamatergic system" 
and "hydroquinone toxicity" which is a metabolite of the 
drug (51). Ketamine also could "suppress phosphorylated 
extracellular signal-regulated protein kinase" (52)and 
"induce the formation of hyperphosphorylated tau", a 
"hallmark of Alzheimer's disease". S-(+)-ketamine, one of 
the main ketamine isomers creates "apoptosis in human 
HepG2 cells" causing hepatocyte and Kupffer cell injury; 
the potential ketamine injury occurs much sooner than 
pentobarbital injury (20, 53). Chronic ketamine use has 
been demonstrated to create hepatic cellular damage; 
while it did not affect the intestinal mucosa as much as 
the liver (54); also, ketamine would cause much more 
severe liver fibrosis. It could be concluded that adverse 
apoptotic effects of ketamine are seen more frequently 
when administered concomitantly with other anesthet-
ics like benzodiazepines or when ketamine is used as 
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a chronic drug; often as an abused drug; so, ketamine 
added to lidocaine could increase the apoptotic effects of 
lidocaine in an additive manner; some drugs like cloni-
dine might have potential effects in prevention of apop-
totic effects of ketamine (55-63).

b) Thiopental: is the prototype barbiturate used for an-
esthesia with an apoptotic mechanism by GABA-A agonis-
tic action (64); also, through inducing lymphocyte death 
by "a CD95-independent mechanism" (65) and by "attenu-
ated staurosporine-induced apoptosis and caspase-like 
activity" (66, 67); of course, the latter effect might be car-
dioprotective and against cardiomyocyte apoptosis.

c) Propofol: is one of the most common intravenous 
anesthetic agents and might attenuate " caspase-3 activa-
tion"; so, attenuating apoptotic effects of some anesthet-
ics (68); also, propofol might have hepatic protective ef-
fects by reducing “the population of apoptotic cells and 
Caspase-3 and PARP cleavage in hepatic L02 cells in a dose-
dependent manner” (69); though there are controversies 
(30, 52).

d) Etomidate: another intravenous anesthetic agent 
having in vitro apoptotic and cytotoxic effects in leuke-
mia RAW264.7 cells (70); currently, no animal or clinical 
evidence for hepatic apoptosis is available.

e) Alpha 2 adrenergic receptor agonists: are used pri-
marily as adjuvant to hypnotics; two main drugs belong 
to this classification, clonidine and dexmedetomidine, 
the 2nd one is synthetic, both having antiapoptotic ef-
fects, possibly against ketamine and isoflurane. Dexme-
detomidine may prevent isoflurane-induced apoptosis 
in brain and some other organs. In clinic, dexmedetomi-
dine could attenuate apoptotic effects of isoflurane in a 
dose dependent manner through a number of proposed 
mechanisms though; there is some controversy (62, 71-
76).

f) Volatile anesthetics: these hydrophobic halogenated 
inhalational agents are often used for general anesthesia. 
Being among the most common inhalational anesthet-
ics, have potential protective and also unwanted effects. 
Development of neuroapoptosis in animal brain (41), po-
tential hepatotoxicity (1, 77, 78), attenuation of "antioxi-
dant activity in plasma and erythrocytes", inhibition of 
"apoptosis in neutrophils", increasing DNA breaks" and 
"cell death" are among their effects, “cytotoxic effects on 
treated tumor cells” having a time dependent manner 
(79-81). Volatile anesthetics have "genotoxicity, cytotox-
icity or teratogenicity" effects (82).The adverse effects of 
anesthetic drugs on liver cells could be altered by the 
process of liver cell apoptosis; which might be triggered 
by "concurrent viral infection" which in turn may "inhibit 
cytochrome (CYP) 450 activities and activate the hepatic 
innate immune system to proapoptotic factors" (8).

Isoflurane related apoptosis is GABA-A independent and 
could be prevented by dexmedetomidine; however, some 
controversies exist; especially when considering the ad-
ministration dose or concomitant use of other anesthet-
ics especially NMDA antagonists or GABA agonist anes-

thetics: Isoflurane has been shown to create apoptosis 
in human neuroglioma cell line with clinically relevant 
concentrations; emulsified form of isoflurane has protec-
tive effects against liver injury through the hepatic levels 
of malondialdehyde (MDA) and superoxide dismutase, 
suggesting "inhibition of cell death and improvement of 
antioxidation in mitochondria" as the potential protec-
tive mechanisms (53, 83-87).

Halothane can create apoptosis in vivo and in vitro in 
liver; Halothane has cytotoxic effects on treated tumor 
cells in a "time and cell line dependent" and even with 
low doses could impair irreversibly the cell genome; al-
though it does not directly interact with DNA; also, clini-
cal doses of halothane in animal model could decrease 
the viability of cells, impair DNA, and trigger "stress-in-
duced apoptosis"; both halothane anesthesia and epidur-
al anesthesia in animal models could induce apoptosis 
with a fall in lymphocyte counts (8, 19, 80, 82, 88-92).

g) Xenon belongs to noble gas family and is really an 
ideal inhalational anesthetic in clinical setting with effi-
cient and satisfactory anesthetic properties not only for 
liver but also for other main organs of the body; many of 
its features are unique among all the anesthetic agents. 
No unwanted hepatic effects of xenon are reported. It is 
"a high-affinity glycine-site NMDA receptor antagonist" 
with both cardio protective and neuroprotective proper-
ties unique for xenon. The unique properties of xenon are 
possibly related to its interaction regarding the "dopami-
nergic pathways". It may even suppress the unwanted 
effects of ketamine and nitrous oxide and the apopto-
genic activity of isoflurane. The only problems of xenon 
are potential pulmonary hypertension and also, the cost 
of the drug due to the especial technology of anesthesia 
machine needed for delivery of xenon to patients; a full 
discussion of the xenon, regarding its merits and pos-
sible problems could be found elsewhere (93).

3.2. Analgesics
Opioids might trigger the apoptosis process in a differ-

ent number of cells; although a few studies have claimed 
some controversies regarding the role of opioids in 
apoptosis; also, δ-opioid receptors which are very much 
frequently found in the cellular membranes of liver cells, 
have an important role in "oncogenesis and progression 
of hepatic neoplasia, viral hepatitis and hepatic cirrho-
sis"; besides, it has been demonstrated in liver cells that 
"activation of δ-opioid receptor" would result in inhibi-
tion of mitochondrial apoptotic pathway through spe-
cialized interactions" involving protein kinase C: in this 
process, the dose and the time of administration of opi-
oidshavekey roles: "higher levels of endogenous opioids" 
was shown to "increase hepatocyte apoptosis" which 
might be related to decreased level of antioxidant de-
fense system in liver cells; the following few paragraphs 
are based on the studies related to opioids (21, 22, 94-112):

a)Morphine: chronic and repeated opioid administra-
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tion, especially morphine, could induce apoptosis in 
hepatocytes through the main opioid receptors; these 
repeated high doses could contribute to oxidative stress 
in the cells of liver, especially considering that blockade 
of opioid receptors could be in confrontation of Fas-
induced hepatitis, strengthen the mice liver, and also 
repeated morphine doses might possibly be in relation 
with deterioration of the host defense chains in mice 
and rat; these findings are much more important when 
considering the possible role of opioids in hepatitis 
pathophysiology;though some controversies exist.

b) Met-enkephalin: it has been proposed that opioid 
growth factor (i.e. [Met(5)]-enkephalin) and its receptor 
have an important role in "endogenous pathways control-
ling cell growth"; the concentration of the opioid growth 
factor is higher in metastasis-positive human liver tissue 
than the normal liver tissue; liver met-enkephalin has 
been demonstrated to have antitumor activity.

c) Methadone: kills leukemia cells through an apoptotic 
mechanism through mechanisms independent of cas-
pases accompanied with cellular depletion of ATP stores 
and a critical state in cell bioenergetics; methadone has 
also been demonstrated to have a similar role in the treat-
ment of small cell lung carcinoma through apoptosis.

d) Fentanyl: is a potent synthetic opioid agonist which 
could trigger lymphocyte apoptosis in a time-dependent 
manner.

e) Sufentanil: its protective effects with an antiapop-
totic mechanism and modulating Bax and Bcl-2 expres-
sionhavebeen demonstrated and similar results with up-
regulation of p-FADD resulting in antiapoptotic effects 
for other opioids are demonstrated.

f) Remifentanil: is among the opioid compounds used 
for anesthesia with a number of specialpharmacologic 
properties. Due to its specific method of metabolism, 
mainly through cholinesterase metabolism in plasma, 
it has an ultrashorthalf-life, necessitating its mode of 
use to be only through intravenous infusion. There are 
some studies demonstrating the antiapoptotic effects 
of remifentanil in CNS and myocardium. In one animal 
study, the anti-inflammatory andantiapoptoticeffects of 
remifentanil were hepatic protective in rat models; this 
study demonstrated that "pretreatment with remifent-
anil can attenuate liver injury both in vivo and in vitro"; 
also, this study demonstrated that this protective effect is 
produced through NOS production which is not related 
to the activation of "opioid receptors" but is maintained 
by "exhausting reactive oxygen species"; so, it seems that 
remifentanil has some specific features, regarding its ef-
fect pathways and the mode of metabolism (i.e. some-
what different from other anesthetics) that might have 
promising features for improved liver effects of opioids 
as experienced in other tissues.

3.3. Amnestic Agents
Among the amnestic agents, benzodiazepines are the 

most well-known ones used much frequently in the peri-
operative period and also, for sedation of patients in ICU 
wards or during invasive procedures; benzodiazepines 
have the potential to induce apoptosis in a number of dif-
ferent cell lines, both in vitro and in vivo; the unwanted 
apoptotic effects of benzodiazepines (especially in the 
liver) are more expressed when they are coadministered 
with other anesthetics like ketamine; other benzodiaz-
epines have also well studied apoptotic effects; the apop-
totic effects of benzodiazepines could be suppressed 
by administration of vitamin C; which could restore 
the cellular reservoirs of glutathione. Midazolam is the 
prototype of these agents in anesthesia. Midazolam has 
apoptotic effects with a dose dependent manner, which is 
independent of GABA receptor and leads to necrosis with 
increased plasma concentrations; though it has varying 
degrees of intensity between different benzodiazepine 
compounds; midazolam or ketamine when added to li-
docaine could increase the apoptotic effects of lidocaine 
in an additive or subadditive manner (9, 18, 63, 64, 113-121).

3.4. Muscle Relaxants
Muscle relaxants are a classification of anesthetic drugs 

which are used for prevention of movements during 
surgery (i.e. akinesia during operationor inside ICU for 
improvement of assisted ventilation). However, it does 
not seem that these agents would express liver apoptosis 
(122-125):

a) Pancuronium: an old nondepolarizing long acting 
muscle relaxant is demonstrated to have apoptotic ef-
fects on "peripheral blood lymphocytes" when used at 
clinical concentrations.

b) Cisatracurium: an intermediate acting muscle relax-
ant; acrylate esters are produced during its metabolism 
and could induce oxidative stress which is a well-known 
and very potent triggering factor for apoptosis in human 
cell lines.

c) Neostigmine: a muscle relaxant reversal agent, which 
has not been demonstrated to have apoptotic activity.

4. Conclusions
Future opportunities and potential therapeutics for 

prevention of anesthetic agents-induced hepatic apopto-
sis.There are some studies that might help us direct fu-
ture studies for prevention of anesthetics-induced apop-
tosis, including hepatic apoptosis.

a)Normal hepatocytes counteract apoptosis by neu-
tralizing free oxygen species using agents like vitamin C 
and vitamin E; ferritin, glutathione, and a number of en-
zymes; as mentioned before, administration of vitamin C 
could suppress the apoptotic effects of benzodiazepines 
through "restoration of cellular glutathione reservoirs" 
(4, 118, 126-129).

b) Beta estradiol, a sex hormone being the predominant 
estrogen during the active female reproduction years; 
however, it is also observed in male blood as a product 
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of testosterone; this hormone protects against neuro-
apoptosis by anesthetics; mainly by up regulating serum 
levels of one of the members of protein kinase B fam-
ily (Akt); which would protect Brain-derived neurotropic 
factor (BDNF); anesthetics can cause BDNF imbalance in 
"cerebral cortex and thalamus in time-dependent fash-
ion"; 17 beta-estradiol pretreatment is also demonstrated 
to protect the liver from injuries with "heat-shock pro-
tein 70 overexpression " mechanism; however, beta-estra-
diol might improve apoptosis possibly in liver cells (19, 
130-132).

c) One of the main agents that could inhibit the apop-
totic effects of anesthetic agents is melatonin which 
could inhibit the "mitochondria-dependent apoptotic" 
(133).

d) Alpha2A-adrenoceptors including clonidine could 
negatively regulate the expression of caspase-3 in the 
neonatal cerebral cortex; exerting their protective roles 
against anesthetics; so clonidine could be used both as 
an anesthetic adjuvant and an antiapoptotic agent; its 
analog, dexmedetomidine, can implement its protective 
roles to prevent against the apoptotic effects of some an-
esthetics like isoflurane; their possible role in liver could 
be the topic of many future researches (62, 71, 73-76, 134).

e) Lithium has been shown to effectively counteract 
the apoptotic effects of ketamine and propofol; hence 
lithium has the possible role in prevention of anesthetic 
induced apoptosis, possibly in brain or liver (52).

f) Xenon has been demonstrated to haveboth cardio-
protective and neuroprotective properties which are 
unique properties of the gas and mimicking the natu-
ral cellular protection pathways through K(ATP) chan-
nels; also, it can prevent “isoflurane, nitrous oxide and 
ketamine” apoptotic activity; possible future protective 
effects of xenon for patients at risk of hepatic apoptosis 
needing anesthesia and surgery could be promising (93).

g) Heme oxygenase 1 has been shown to "improve neu-
rologic outcome" in rats by "protecting neurons against 
apoptosis". Possibly Heme oxygenase 1 could be tried 
to see if it could be useful for prevention of hepatic cell 
apoptosis after anesthetic administration (135).

h) Antithrombin decreases hepatic injury through re-
leasing calcitonin gene-related peptide or CGRP; CGRP 
improves hepatic cellular tolerance to cell injury, includ-
ing apoptosis; CGRP can in turn increase the production 
of insulin-like growth factor-I (IGF-I); on the other hand, 
capsaicin, increases the release of CGRP, which might in-
crease IGF-I production, and thereby reduce liver apopto-
sis(9, 21, 134-138).

i) Gamma-hydroxybutyrate has been shown to protect 
liver against injury through different mechanisms (138).

j) Pentapeptide V5, with its full name as "pentapeptide 
Val-Pro-Met-Leu-Lys, V5" is an antiapoptoticpolypeptide 
(120, 137) which has been shown to be liver protective.

k) Also, a number of pan-caspase inhibitors, namely 
IDN-6556 (N-[(1,3-dimethylindole-2-carbonyl)valinyl]-
3-amino-4-oxo-5-fluoropentanoic acid) and IDN-1965 are 

in preclinical phase and have been shown to be liver pro-
tective andantiapoptotic; which may have some role in 
prevention of anesthetics-induced apoptosis (including 
liver) in future years (17, 136, 139-142).

l) Depletion of Kupffer cells from the liver increases the 
risk of hepatic injury (as seen after acetaminophen mod-
el hepatic damage), reduction in IL 6, IL 10, TNFα produc-
tion and number of Kupffer cells are seen in this condi-
tion accompanied with averted activity of Fas/Fas ligand; 
possibly, these phenomena are attenuated byIbuprofen; 
though the exact mechanism is controversial; also, Can-
nabinoid CB2 agonists have similar role in protecting 
Kupffer cells, being possible antiapoptotic agents in liver 
(9, 34, 39, 127, 143-150).

m) Also, "exogenous administration of S-adenosyl-l-
methionine" prevents hepatotoxicity by the same mecha-
nism (151).

n) After exposure of the liver cells to the viral agents or 
haptens, there would be an increase in the interleukin 1-β 
and δ levels which demonstrate Toll like receptor 4 (TLR 4) 
involvements. TLR 4 could enhance the presence of TNF-
αin the Kupffer cells after hepatic cell insults (6, 37, 53).
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