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Introduction: GB virus C (GBV-C) or hepatitis G virus (HGV) is an enveloped, RNA positive-stranded flavivirus-like particle. E2 envelope 
protein of GBV-C plays an important role in virus entry into the cytosol, genotyping and as a marker for diagnosing GBV-C infections. 
Also, there is discussion on relations between E2 protein and gp41 protein of HIV. The purposes of our study are to multi aspect molecular 
evaluation of GB virus C E2 protein from its characteristics, mutations, structures and antigenicity which would help to new directions for 
future researches.
Evidence Acquisition: Briefly, steps followed here were; retrieving reference sequences of E2 protein, entropy plot evaluation for finding 
the mutational /conservative regions, analyzing potential Glycosylation, Phosphorylation and Palmitoylation sites, prediction of primary, 
secondary and tertiary structures, then amino acid distributions and transmembrane topology, prediction of T and B cell epitopes, and 
finally visualization of epitopes and variations regions in 3D structure.
Results: Based on the entropy plot, 3 hypervariable regions (HVR) observed along E2 protein located in residues 133-135, 256-260 and 279-281. 
Analyzing primary structure of protein sequence revealed basic nature, instability, and low hydrophilicity of this protein. Transmembrane 
topology prediction showed that residues 257-270 presented outside, while residues 234- 256 and 271-293 were transmembrane regions. 
Just one N-glycosylation site, 5 potential phosphorylated peptides and two palmitoylation were found. Secondary structure revealed 
that this protein has 6 α-helix, 12 β-strand 17 Coil structures. Prediction of T-cell epitopes based on HLA-A*02:01 showed that epitope NH3-
LLLDFVFVL-COOH is the best antigen icepitope. Comparative analysis for consensus B-cell epitopes regarding transmembrane topology, 
based on physico-chemical and machine learning approaches revealed that residue 231- 296 (NH2- EARLVPLILLLLWWWVNQLAVLGLPAVEAA
VAGEVFAGPALSWCLGLPVVSMILGLANLVLYFRWL-COOH) is most effective and probable B cell epitope for E2 protein.
Conclusions: The comprehensive analysis of a protein with important roles has never been easy, and in case of E2 envelope glycoprotein of 
HGV, there is no much data on its molecular and immunological features, clinical significance and its pathogenic potential in hepatitis or 
any other GBV-C related diseases. So, results of the present study may explain some structural, physiological and immunological functions 
of this protein in GBV-C, as well as designing new diagnostic kits and besides, help to better understandingE2 protein characteristic and 
other members of Flavivirus family, especially HCV.
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Implication for health policy/practice/research/medical education:
It is important for health providers to expand their knowledge and understanding of bioinformatics analysis which will help new directions for their 
future research. The interplay between experimental and computational biology has enormous benefits and providing invaluable Information in many 
different areas of the viral molecular characteristics.
Copyright © 2013, Kowsar Corp.; Published by Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
In 1995 and 1996, different isolates of the same new en-

veloped, RNA positive-stranded flavivirus-like particles 
with a genomic size of about 9.3 Kb, were isolated by two 
independent research groups, which named GB virus C 
(GBV-C) and hepatitis G virus (HGV), respectively. This 

RNA contains an open reading frame (ORF) which en-
codes polyprotein with about 2900 amino acids length. 
By viral/host proteases the polyprotein of GB virus C is 
cleaved into structural proteins (include; Core, E1 and E2) 
and nonstructural proteins (include; NS2, NS3, NS4, NS5a 
and NS5b) (1, 2). Until now, 6 genotypes were reported in 
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different geographical regions of the world (3). This virus 
could transmit parentally through different routes (1, 4) 
and is common in some parts of the world such as Iran 
(5). Overview of HGV infection in Iranian different popu-
lation revealed that HGV coinfection is highly prevalent 
among patients and blood donors infected with HIV or 
HCV, and negative HIV, HCV and HBV populations are a 
low risk group for HGV infection. There is intermediate 
frequency among patients on hemodialysis, and those 
with thalassemia, IVDUs, and leukemia (5, 6). Occupa-
tional infection offers the lowest rates, and does not need 
to monitor blood donors before transfusion (5). 

There are evidences on reducing HCV-related liver mor-
bidity associated with GB virus C (GBV-C) and inhibitory 
effect of GB virus C on HCV/HIV viremia, survival, a lower 
mortality rate, slower disease progression in patients 
with coinfection and also, GBV-C could play role as a pre-
dictor for hospital acquired infection (7, 8). Interferon-
alpha treatment caused a marked but usually transient 
reduction in serum GBV-C/HGV RNA, and ribavirin had, at 
most, a modest antiviral effect (9). 

E2 envelope protein of GB virus C plays role in virus en-
try into the cytosol, genotyping (10), the ideal targets for 
vaccine development, and a marker to diagnose GBV-C 
infections (11), and besides, the concomitance between 
E2 protein and gp41 protein of HIV-1 affects protein fold-
ing and whether it forms a non active complex with gp41-
FP. In primates (Chimpanzees model in HCV) it has been 
reported that purified recombinant envelope glycopro-
teins (E1 and E2) had potential to protect against chal-
lenge with homologous virus, therefore these proteins 
are the ideal targets for vaccine development (11).

Nowadays, viral-related bioinformatics analysis tools 
are powerful approaches to predict molecular features 
such as similarity, glycosylation/phosphorylation/ Palmi-
toylation sites, epitope recognition, protein primary sec-
ondary/ tertiary structures of proteins encoded in viral 
genomes (12).

One of the branches of bioinformatics is Immunoin-
formatics or computational immunology which has 
emerged recently as an important field in the analysis, 
immune function modeling and prediction of both B and 
T cell epitopes, novel vaccines designing and allergenic-
ity analysis (13, 14).

Glycoprotein glycosylation characteristics are known 
to be in association with changes of virulence, cellular 
tropism in enzymes, and survival of viruses (15). Palmi-
toylation is an important lipid modification (16), which 
enhances the protein surface hydrophobicity, mem-
brane affinity and aggregation, modulating proteins' 
membrane trafficking, stability, and cell signaling (17, 
18).Protein phosphorylation has role in regulating physi-
ological functions of virus proteins in replication and as-

sembly processes (19). 
Different structure prediction approaches with differ-

ent reliability simplify the discovery process in biology, 
and provide a structural framework for new hypotheses. 
They were also continuously developed and evaluated 
(20, 21). Understandings of a protein structure provide 
deep insight into its interaction with other proteins and 
small molecules. On the other hand, protein interactions 
define the protein function, and its biological role in an 
organism. So, protein structures and structural features 
prediction is a fundamental area of computational biol-
ogy (22). To date, there is no data on computational mo-
lecular features and Immunoinformatics study of GB vi-
rus C E2 protein; although, there are a lot of reports about 
HCV E2 protein analysis (23-28). 

The purposes of our study are to multi aspect molecular 
evaluation of GB virus C E2 protein from its characteris-
tics, mutations, structures and antigenicity. These valu-
able information would help to new directions for future 
research such as designing diagnostic kits and help to 
better understanding similarities or differences of bio-
logical features of GB C virus in comparison with other 
members of the Flavivirus family, especially Hepatitis C 
virus (HCV). The interplay between experimental and 
computational biology has enormous benefits and pro-
viding invaluable Information in many different areas of 
the sciences.

2. Evidence Acquisition

2.1. Retrieving Reference Sequences of E2 Protein
Complete putative E2 (Accession number (AC)

NP_803203) of GB virus C/Hepatitis G virus mentioned as 
a reference sequence in National Center for Biotechnol-
ogy Information (NCBI) Databases (http://ncbi.nlm.nih.
gov/) was retrieved. In bioinformatics analyzing a refer-
ence sequence (RefSeq) is mostly preferred causes that 
well annotated and nucleotide sequence (DNA, RNA) and 
its protein products are available and reliable.

2.2. Entropy Plot and Alignment for Finding the 
Mutational/Conservative Regions 

We retrieved 100 sequences of E2 protein of GB virus C 
from NCBI by direct searching. Obtained sequences were 
aligned, analyzed and trimmed in Bioedit 7.7.9 software. 
Subsequently, short sequences and areas with ambigu-
ous alignment were excluded. Then, Entropy values (Hx) 
were measured. This analysis measures variation at each 
amino acid position in the set of aligned sequences. Re-
sults are shown in Figure 1. 
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Figure 1. Variation along E2 Protein Sequences of Hepatitis G Virus of GB Virus C Shown by Entropy Plot

Hyper Variable Region (HVR) Border line variation

Regions above threshold 1 were supposed as high variable regions, and arrows represent these positions. Circle shows border line variation that did not 
include in variation analysis. Entropy Values (Hx) are a measure of variation at each amino acid position in the set of aligned sequences.

2.3. Analyzing Primary Structure of E2 Protein, 
Amino Acid Distributions, and Transmembrane 
Topology

The primary protein structure of E2 (e.g. length, Molec-
ular weight (Mw), Isoelectric point (pI) and amino acid 

distribution) was arranged in Table 1 by utilizing Expasy 
tools (http://web.expasy.org/protparam/). For amino acid 
distribution evaluation we used lrrfinder server (http://
www.lrrfinder.com/lrrfinder.php). Finally, transmem-
brane topology of E2 protein was checked by using TM-
HMM server ( 29 ). 

Table 1. Parameters Computed Using Expasy Prot Param Tool 

Accession Number (AC.) E2 (AC. NP_803203)

No. of amino acids 312

Mol. Wt a 33947.8

pI a 8.69

Total -R and +R a 21, 26

Inst.II a 44.95 

AI, GRAVY a 100.58, 0.333
a  Abbreviations: Mol. Wt, Molecular Weight; pI, Theoretical Isoelectric Point; -R, Number of negative charged residues (Arg + Lys); +R, Number of 
positive charged residues(Asp + Glu); EC, Extinction Coefficient at 280 nm; II, Instability Index; AI, Aliphatic Index; GRAVY, Grand Average Hydropathicity.

2.4. Analysis of N-glycosylation, Potential Phos-
phorylation and Palmitoylation Sites

We used NetNGlyc 1.0 server (http://www.cbs.dtu.dk/ser-
vices/NetNGlyc) and NetPhos 2.0 server (http://www.cbs.
dtu.dk/services/NetPhos.) to predict N-Glycosylation and 

Phosphorylation sites in E2 protein. These two servers 
are both taking advantage of artificial neural networks 
(ANN) for this prediction. NetNGlyc 1.0 server examines 
the sequence context of Asn-Xaa-Ser/Thr sequences and 
the NetPhos 2.0 server predicts serine, threonine and ty-
rosine phosphorylation sites. Palmitoylation sites were 
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predicted with the medium threshold frequency by us-
ing services at http://csspalm.biocuckoo.org/prediction.
php, in particular CSS-Palm 2.0 software.

2.5. Prediction of Secondary Structure of E2 Protein
The secondary structure of the protein was evaluated 

by using bioinformatics tools available on the website; 
http://npsa-pbil.ibcp.fr. The method of GOR4 (http://npsa-
pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_ gor4.
html) was used to identify the alpha helices, beta strands, 
and coil residues. 

2.6. Prediction of Tertiary Structure of E2 Protein
As we could not find any matches in SWISS-PROT for 

E2 to analyze functional and structural motifs, we used 
SCRATCH suite (http://www.igb.uci.edu/) combines ma-
chine learning methods, evolutionary information, frag-
ment libraries and energy functions to predict protein 
structural features and tertiary structures. The 3D model 
is visualized by the Swiss-Pdb Viewer software.

2.7. Prediction of T-cell and B-cell Epitopes 

2.7.1. Prediction of T-cell Epitopes
IEDB (Immuno Epitope Database) server website (http://

tools.immuneepitope.org/mhci/) provides access to pre-
dictions of peptide binding to MHC class I molecules.

It estimates IC50 values for peptides binding to spe-
cific MHC molecules. List box for selecting the predic-
tion method allows to use different MHC class I binding 
prediction methods such as Artificial Neural Networks 
(ANN), Stabilized Matrix Method (SMM), SMM with a Pep-
tide MHC Binding Energy Covariance matrix (SMMPM-
BEC), Scoring Matrices derived from Combinatorial Pep-
tide Libraries (Comblib_Sidney2008), Consensus method 
(e.g. ANN, SMM, and CombLib), and NetMHCpan. 

HLA-A*0201 is the most frequent allele and also the first 
human HLA allele for which peptide binding prediction 
was developed (30). Therefore, predictions of epitopes 
were checked for this allele.

2.7.2. Prediction of B-cell Epitopes

2.7.2.1 Prediction of Linear B-cell Epitope Based on Physi-
co-Chemical Profiles

E2 protein antigenicity prediction was checked based 
on hydrophobicity, assessment of solvent accessibility 
regions, flexibility, secondary structure (Beta-Turn pre-
diction), and Kolaskar and Tongaonkar method (31). Ko-
laskar and Tongaonkar prediction method needs more 
attention, as is based on a semi empirical approach, de-
veloped on physic-chemical properties of amino acid 
residues (i.e. hydrophilicity, accessibility and flexibility). 
This approach has the efficiency to detect antigenic pep-

tides with about 75% accuracy. To achieve these goals we 
exploit Bcepred server (32). The accuracy of prediction 
in this server models varies from 52.92% to 57.53% based 
on various properties. The highest accuracy obtained for 
this server was 58.70% at threshold 2.38 when it combined 
four amino acid profiles (hydrophilicity, flexibility, polar-
ity and exposed surface).

2.7.2.2. B-cell Epitope Prediction by Machine Learning 
Approaches 

Several methods using machine learning approaches 
have been introduced. The hybrid method applied in this 
study is composed of hidden Markov model, Feed for-
ward and recurrent neural network, subsequence kernel 
based SVM and SVM which are used in BepiPred (33), AB-
CPred (34), BCPred (35) and ABCPred, respectively.

2.8. Comparative Analysis of Consensus Epitope 
for B-cell, Visualization of Epitopes and Variations 
in 3D Structure

Finally, we compared all the analyses mentioned above 
to interpret unique molecular features and Immunoin-
formatics of this protein. Also, the predicted B-cell epit-
opes were evaluated whether they were present in outer 
transmembrane regions, using TMHMM results. Epitopes 
exposed on the surface of the membrane were selected 
and subjected to further analysis. Moreover, variations 
represented in entropy plot were checked in 3D model.

2.9. Homology Models Validation
The quality evaluation of the modeled structure is an 

essential step in homology modeling. The geometric es-
timation of the modeled 3D structure (tertiary structure) 
was performed using the Ramachandran plot (http://
mordred.bioc.cam.ac.uk/~rapper/rampage.php). Ram-
achandran plots is The two-dimensional (2D) scatter 
plots of φ, ψ (or torsional angles) which tests whether the 
model structure is stereo-chemically stable and the num-
ber of outliers (36). The plot included three regions; the 
favored, allowed and outlier regions.

3. Results

3.1. Entropy Plot for Finding the Mutational and 
Conservative Sites

Based on the entropy plot, 3 hyper variable regions 
(HVR) observed along E2 protein that located in residues 
133-135, 256-260 and 279-281. HVR are regions in sequence 
with highest variation in different isolates of virus. Be-
sides, highest conservation observed at amino acids 
152-168 and 183-248. Residue 256-260 is located in outer 
membrane region of E2 protein (see 4.2.), and this vari-
ability may help GB virus C to escape immune response 
of its host.
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3.2. Analyzing Primary Structure, Amino Acid Dis-
tribution of E2 Protein and Transmembrane Topol-
ogy

Summarized obtained data from Expasy ProtParam tool 
presented in Table 1. 

An average length of protein sequence and molecular 
weight of constructs were mentioned in the Table 1. Iso-
electric point (pI) is the pH point in which the protein 
surface is covered with charge, but net charge of protein 
is zero. Isoelectric point (pI) is important to estimate 
solubility, and the mobility in an electric field is zero. 
The calculated isoelectric points (pI) were 8.69 for this 
protein. The computed value more than 7 indicates that 
the E2 protein has basic nature. The instability index pro-
vides the estimation of the stability of protein in in-vitro. 

This protein is classified as unstable regarding instability 
index. The high aliphatic index (100.58) reflects that E2 
protein is stable for a variety of temperature ranges. The 
Grand Average Hydropathicity (GRAVY) values had posi-
tive results (0.333), which indicates the low hydrophilic-
ity of protein and low interaction of the protein with sur-
rounding water molecules. 

In physicochemical analysis, it was revealed that the 
most abundant amino acid residues were glutamic and 
glycine. 

Distribution of amino acid frequency in E2 protein 
showed that hydrophobic residues are more frequent 
than hydrophilic residues, and also, negative R-group to 
positive R-group (Figure 2). So, most part of this protein is 
hydrophobic and locates in membrane. 

Figure 2. Amino acid Distribution and Composition
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Frequency of each amino acid, rate of hydrophobic/Hydrophilic residues and positive and negative R-Group in E2 Protein are depicted in figure. This 
Figure 2 shows that hydrophobic residues are significantly more frequent, as it reflects the hydrophobicity nature of most parts of E2 protein.

Analysis of transmembrane topology using the TM-
HMM online server found that residues 257-270 present-
ed outside while residues 234- 256 and 271-293 were trans-
membrane region, and residues 1- 233 and 294-312 were 

inside the core region of the protein (Figure 3). Also, this 
analysis would help to select efficient and effective B-cell 
epitopes. 

Figure 3. Transmembrane Topology of E2 Protein
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Red color: Transmembrane region of E2 protein, Blue color: Inside regions and violet color: Outside membrane regions. Vertical axis and horizontal axis 
are probability of prediction (transmembrane, inside or outside) and order of amino acids in protein sequence of E2 protein, respectively.

3.3. Analyzing Potential Glycosylation, Phosphory-
lation and Palmitoylation Sites 

Just one N-glycosylation site (residue 73) was found in 
E2 protein of GB virus C (Figure 4 and Table 2). Potential 
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phosphorylation sites analysis revealed that there were 
5 Serine and Threonine potential phosphorylated pep-
tides in the E2 protein (Table 2). Details of phosphoryla-

tion analysis were depicted in Figure 4. We found both of 
glycosylation and phosphorylation sites located inside of 
the membrane region of E2 protein. 

Figure 4. Representation of Predicted Glycosylation and Phosphorylation Sites
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A shows glycosylation, and B represents phosphorylation. Details of each plot are arranged in Table 2.

Table 2. Details of Glycosylation and Phosphorylation Sites 

Envelope Glycoprotein E2 (AC NP_803203)

Glycosylation positions and related sequence 73 (NRTT)

Phosphorylation positions 5 Serine Phos. Sites (include; 8, 17, 34, 95, 169), 5 Threonine Phos.
sites(include; 12, 63, 76, 79 , 110), 0 Tyrosine Phos. site 

To account for the possible Palmitoylation sites we ap-
plied CSS-PALM 3.0 software by choosing medium thresh-
old (Table 3). Results showed two palmitoylation sites in 

this protein which are near each other. Palmitoylation 
sites are located inside of this protein regarding TMHMM 
online server. 

Table 3. Details of Palmitoylation Sites Prediction 

Position Peptide Score Cutoff

38 RPASCGTCVRDCWPE 0.417 0.408

42 CGTCVRDCWPETGSV 0.435 0.408
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3.4. Protein Secondary Structure Prediction
As it shown in Figure 5, six α-helix, 12 β-strandexist in E2 

protein of GB virus C. 
Finally calculating Coils (Beta turns) revealed 17 coil re-

gion in E2 structure. Outer membrane region predicted 
by TMHMM online server has α-helix (dominant struc-
ture), small β-strand as well as coil structure.Transmem-
brane regions have α-helix predominantly.

Figure 5. GOR IV Secondary Structure Prediction Method

protein Secondary Structure of HGT E2
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Graphic visualizes the prediction. Blue; Alpha Helix (α-helix), Red; Extended Strand (β-strand), Violet; Other states (Coils).

3.5. Prediction T-cell and B-cell Epitopes

3.5.1. Prediction T-cell Epitopes
The predicted epitopes were evaluated for their im-

munogenicity, and epitopes found to be immunogen in 
nature were introduced as major immunogenic epitopes 
for T CD8+-cell (Table 3). Epitope NH3-LLLDFVFVL-COOH 
(Rank 0.2), NH3-ILLLLWWWV-COOH (0.3), NH3-LMFLVL-
WKL-COOH (0.4), and NH3-KLMGSRNPV-COOH (0.5) at po-
sitions 215-223, 238-246, 301-309 and 170-178 respectively, 
were found to have the highest antigenicity among all 
epitopes. Also, none of the predicted epitopes were lo-

cated in HVR regions. 

3.5.2. Prediction B-Cell Epitopes of E2 Protein

3.5.2.1 Prediction of Linear B-Cell Epitopes Basedon 
Physic-Chemical Properties 

In Figure 6 we evaluated the existence of linear B-cell 
epitopes in E2 protein sequence based on physico-chem-
ical properties. Details of these predictions are arranged 
in Table 4. 
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Table 4. Predicted T CD8+ cell Epitopes by IEDB Server,forSpecificity Reasons Only Epitopes Under Rank 2 Were Selected, Epitope 
Lengths Were Fixed on 9mer 

Protein Allele Start- End Sequence Method used Rank

E2 HLA-A*02:01 215-223 LLLDFVFVL Consensus (ann,smm,comblib_sidney2008) 0.2

E2 HLA-A*02:01 238-246 ILLLLWWWV Consensus (ann,smm,comblib_sidney2008) 0.3

E2 HLA-A*02:01 301-309 LMFLVLWKL Consensus (ann,smm,comblib_sidney2008) 0.4

E2 HLA-A*02:01 170-178 KLMGSRNPV Consensus (ann,smm,comblib_sidney2008) 0.5

E2 HLA-A*02:01 214-222 WLLLDFVFV Consensus (ann,smm,comblib_sidney2008) 0.6

E2 HLA-A*02:01 241-249 LLWWWVNQL Consensus (ann,smm,comblib_sidney2008) 0.6

E2 HLA-A*02:01 233-241 RLVPLILLL Consensus (ann,smm,comblib_sidney2008) 1

E2 HLA-A*02:01 221-229 FVLLYLMKL Consensus (ann,smm,comblib_sidney2008) 1.1

E2 HLA-A*02:01 281-289 SMILGLANL Consensus (ann,smm,comblib_sidney2008) 1.3

E2 HLA-A*02:01 282-290 MILGLANLV Consensus (ann,smm,comblib_sidney2008) 1.3

E2 HLA-A*02:01 216-224 LLDFVFVLL Consensus (ann,smm,comblib_sidney2008) 1.5

E2 HLA-A*02:01 112-120 HLVECPTPA Consensus (ann,smm,comblib_sidney2008) 1.6

E2 HLA-A*02:01 219-227 FVFVLLYLM Consensus (ann,smm,comblib_sidney2008) 1.6

E2 HLA-A*02:01 253-261 GLPAVEAAV Consensus (ann,smm,comblib_sidney2008) 1.9
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Table 5. Prediction of B-cell Epitopes Using Any of the Physico-Chemical Properties; Hydrophilicity, Flexibility/Mobility, Accessibility, 
Polarity, Exposed Surface and Turns 

Profiles Positions in E2 protein Sequence

Hydrophilicity 1MGPPSSAAACSRGSPRILRVRAGGISFFYTIMAVLLLLLVVEAGAILAPATHACRANGQYFLTNCCAPEDIGFCLEGGCLVALGCT-
ICTDQCWPLYQAGLAVRPGKSAAQLVGELGSLYGPLSVSAYVAGILGLGEVYSGVLTVGVALTRRVYPVPNLTCAVACELKWESEF-
WRWTEQLASNYWILEYLWKVPFDFWRGVISLTPLLVCVAALLLLEQRIVMVFLLVTMAGMSQGAPASVLGSRPFDYGLTWQTCS-
CRANGSRFSTGEKVWDRGNVTLQCDCPNGPWVWLPAFCQAIGWGDPITYWSHGQNQWPLSCPQYVYGSATVTCVWGSASW-
FASTSGRDSKIDVWSLVPVGSATC360

Flexibility 1MGPPSSAAACSRGSPRILRVRAGGISFFYTIMAVLLLLLVVEAGAILAPATHACRANGQYFLTNCCAPEDIGFCLEGGCLVALGCT-
ICTDQCWPLYQAGLAVRPGKSAAQLVGELGSLYGPLSVSAYVAGILGLGEVYSGVLTVGVALTRRVYPVPNLTCAVACELKWESEF-
WRWTEQLASNYWILEYLWKVPFDFWRGVISLTPLLVCVAALLLLEQRIVMVFLLVTMAGMSQGAPASVLGSRPFDYGLTWQTCS-
CRANGSRFSTGEKVWDRGNVTLQCDCPNGPWVWLPAFCQAIGWGDPITYWSHGQNQWPLSCPQYVYGSATVTCVWGSASW-
FASTSGRDSKIDVWSLVPVGSATC

Accessibility 1MGPPSSAAACSRGSPRILRVRAGGISFFYTIMAVLLLLLVVEAGAILAPATHACRANGQYFLTNCCAPEDIGFCLEGGCLVALGCT-
ICTDQCWPLYQAGLAVRPGKSAAQLVGELGSLYGPLSVSAYVAGILGLGEVYSGVLTVGVALTRRVYPVPNLTCAVACELKWESEF-
WRWTEQLASNYWILEYLWKVPFDFWRGVISLTPLLVCVAALLLLEQRIVMVFLLVTMAGMSQGAPASVLGSRPFDYGLTWQTCS-
CRANGSRFSTGEKVWDRGNVTLQCDCPNGPWVWLPAFCQAIGWGDPITYWSHGQNQWPLSCPQYVYGSATVTCVWGSASW-
FASTSGRDSKIDVWSLVPVGSATC

Turns Nothing

Exposed Sur-
face

Nothing

Polarity 1MGPPSSAAACSRGSPRILRVRAGGISFFYTIMAVLLLLLVVEAGAILAPATHACRANGQYFLTNCCAPEDIGFCLEGGCLVALGCT-
ICTDQCWPLYQAGLAVRPGKSAAQLVGELGSLYGPLSVSAYVAGILGLGEVYSGVLTVGVALTRRVYPVPNLTCAVACELKWESEF-
WRWTEQLASNYWILEYLWKVPFDFWRGVISLTPLLVCVAALLLLEQRIVMVFLLVTMAGMSQGAPASVLGSRPFDYGLTWQTCS-
CRANGSRFSTGEKVWDRGNVTLQCDCPNGPWVWLPAFCQAIGWGDPITYWSHGQNQWPLSCPQYVYGSATVTCVWGSASW-
FASTSGRDSKIDVWSLVPVGSATC

Antigenic Pro-
pensity

1MGPPSSAAACSRGSPRILRVRAGGISFFYTIMAVLLLLLVVEAGAILAPATHACRANGQYFLTNCCAPEDIGFCLEGGCLVALGCT-
ICTDQCWPLYQAGLAVRPGKSAAQLVGELGSLYGPLSVSAYVAGILGLGEVYSGVLTVGVALTRRVYPVPNLTCAVACELKWESEF-
WRWTEQLASNYWILEYLWKVPFDFWRGVISLTPLLVCVAALLLLEQRIVMVFLLVTMAGMSQGAPASVLGSRPFDYGLTWQTCS-
CRANGSRFSTGEKVWDRGNVTLQCDCPNGPWVWLPAFCQAIGWGDPITYWSHGQNQWPLSCPQYVYGSATVTCVWGSASW-
FASTSGRDSKIDVWSLVPVGSATC

Antigenicity (immunogenicity) prediction plot of E2 
(Figure 7) protein revealed span of highly antigenic re-
gion that located in residue 231- 296 (fragment of NH3-
EARLVPLILLLLWWWVNQLAVLGLPAVEAAVAGEVFAGPALSW-

CLGLPVVSMILGLANLVLYFRWL-COOH). Also, regions 19-42 
(NH3- WGIPCVTCVLDRRPASCGTCVRDC-COOH) and 109-122 
(NH3-DTLHLVECPTPAIE-COOH) are other important anti-
genic regions in this protein. 

Figure 7. Antigenicity Prediction Plot of E2 Protein by Using Kolaskar-Tongaonkar Algorithm
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Regions with antigenic propensity scale upper 1 are antigenic regions. Threshold, average, maximum and minimum antigenicity were 1.000, 1.058, 1.259, 
and 0.866 respectively. Window size and center position were 7 and 4, respectively.

3.5.2.2. Prediction Epitopes Based on Machine Learning 
Approaches

B-cell epitope prediction based on machine learning 
approaches were performed using BCPRED server, where 
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criteria were set to have 75% specificity and ABCpred 
65.93% accuracy with fixed length of 20 and 16 amino ac-

ids (Table 5).Higher score of the peptide means the high-
er probability as an epitope. 

Table 6. Prediction Epitopes Based on Machine Learning Approaches a 

Server Classifier 
Specificity

Use Over-
lap Filter

Epitopes Scores

BCPREDS 1.0 80% yes AA230-250 (AGMSQGAPASVLGSRPFDYG), AA296-316 (AIGWGDPI
TYWSHGQNQWPL),AA339-359 (STSGRDSKIDVWSLVPVGSA)and 
AA165-185 (ELKWESEFWRWTEQLASNYW)

0.977, 0.966, 0.935, 
0.887

ABCpred 85% yes AA43-59(AGAILAPATHACRANG), AA237-
253(PASVLGSRPFDYGLTW), AA299-215(WGDPITYWSHGQNQWP), 
AA147-163(ALTRRVYPVPNLTCAV), AA68-84(PEDIGFCLEGGCLVAL) 
and AA320-236(YVYGSATVTCVWGSAS)

0.95, 0.93, 0.92, 0.90, 
0.85, 0.85

a The Predicted B cell Epitopes are Ranked According to Their Score Obtained by Trained Machine Learning Algorithm. All the Peptides Shown Here 
AreAbove the Threshold Value Chosen. We Tried to Select Highest Score Hits.

3.6. Comparative Analysis for Consensus Epitopes 
for B-cell and 3D Structure of E2 Protein

Prediction of B-cell epitopes regarding transmembrane 
topology (especially outer membrane region), based on 
physico-chemical properties and machine learning ap-
proaches showed that this protein has different regions 
with potential of immunogenicity, but machine learning 
method by BCPREDS (specificity 80%) and ABCpred speci-
ficity (85%) could not predict epitopes in range of 257-270 
(outer membrane region of protein). These servers had a 

consensus epitope in approximate region of 230-253 that 
is in transmembrane region based on TMHMM server 
prediction. In physico-chemical approaches the best per-
formance was seen by Kolaskar-Tongaonkar algorithm 
in which a part of epitope Residue 231- 296 (fragment of 
NH2- EARLVPLILLLLWWWVNQLAVLGLPAVEAAVAGEVFAG-
PALSWCLGLPVVSMILGLANLVLYFRWL-COOH) was located 
in outer and transmembrane of E2 protein (Figure 8). 
These epitopes are optimal for immunization and diag-
nostic programs. 

Figure 8. Predicted 3D Structure of the E2 Protein and Visualization of Epitopes and Variations Regions

Epitopes predicted by different methods and outer membrane region were shown by spheres representation in 3D Structure. Hyper Variable Regions 
(HVR) represent by surface representation.
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3.7. Validation Modeled Structure by Ramachan-
dran Plot Assessment

3D model of the E2 protein with a total number of 310 
amino acids was validated using the Ramachandran plot. 
Assessment of the plot (Figure 9) revealed that 90.4% of 

residues (281 amino acids) are in the favored regions, 4.5% 
residues (26 amino acids) in allowed regions and 4.8% res-
idues (15 amino acids) are in the outlier region. The over-
all percentage of residues in favored and allowed region 
was 94.9. Therefore, the modeled structure is suitable. 

Figure 9. Ramachandran Plot of Predicted Model for the E2 Protein of Hepatitis G Virus

RAMPAGE Server Considers Torsional Angles ψ Against φ of Amino Acid Residues in Protein Structure and Results Defining in Favored, Allowed and Outlier 
Categories.

5. Discussion
Here we provided deep insight into the computational 

molecular features and Immunoinformatics characteris-
tic of E2 protein of GBV-C/HGV by using various bioinfor-
matics techniques.

GBV-C and HGV are closely related isolates of the same 
virus, with more than 95 percent sequence homology 
(37). GBV-C and HGV are reported to have a mutation rate 
lower than the 1.4-1.9 × 10-3 base substitutions per site per 
year reported for HCV (38, 39).

RNA virus genomes (due to the lack of proofreading abil-
ity of their RNA-dependent RNA polymerase) have special 

potential to undergo mutation at high frequencies, and 
under selective pressures rapidly generate populations 
of viral variants. Such variability helps to evading of virus 
from clearance by both T- and B-cell immunity (40).

Three different HVR (HVR1133-135, HVR2256-260 and 
HVR3279-281) observed along E2 protein. Besides, residue 
HVR2256-260 located in outer membrane region of E2 
protein. Different researchers suggest that HCV hyper-
variable region 1 (HVR1) is located in a spanning of 27–31 
(or 25-30 in some reports) residues at E2 glycoprotein 
which is the main target of the anti-HCV neutralizing re-
sponse and hence plays an important role in providing 
viral persistence (41, 42). Substitutions of amino acid in 
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HVR1 during HCV infection provide groups of genetically 
related variants named quasi species (43), that some of 
these mutants have potential to escape immune response 
and persist after sero-conversion (42). Much of HCV vari-
ability is concentrated in the HVR1 region, therefore for 
designing more successful vaccine it is needed to induce 
a broad spectrum, and more cross-reactive response 
against many HVR1 simultaneously, which bioinformat-
ics could achieve this goal (44).

Sequence analysis of the transmembrane topology of 
HCV E2 in details and its importance are widely discussed 
(45). These studies revealed that mutations rarely occur 
at transmembrane sites and there are high conservation, 
although there is variation in outer membrane region 
(these conservation of residues are crucial for the viral 
specific functions) (45-47). In our study, analysis of trans-
membrane topology using the TMHMM online server 
for GBV-C envelope E2 revealed that residues 257-270 pre-
sented outside while residues 234- 256 and 271-293 were 
transmembrane regions.

Finding modifications sites, patterns and number of 
important viral protein such as; N-glycosylation, palmi-
toylation, phosphorylation etc. have an enormous effects 
on foldings, entry functions, viral transportation/replica-
tion/assembly, infectivity, pathogenicity, immunogenic-
ity as well as it may explain different virulence between 
different isolates of a virus and also viral genus (48).

In residue 73, N-glycosylation site was found in E2 pro-
tein of GB virus C. In case of HCV the ectodomain of enve-
lope glycoproteins E2 has high modification by N-linked 
glycans and defined 11 potential glycosylation sites (49, 
50), that E2 glycosylation sites show conservation. In-
deed, comprehensive sequence analyses of potential 
glycosylation sites in E2 indicate that 9 of the 11 sites are 
strongly conserved (49, 50). In this research, phosphory-
lation sites analysis revealed that there were 5 Serine/
Threonine potential phosphorylated peptides. Both of 
glycosylation and phosphorylation sites were located in-
side of the membrane region of E2 protein. 

Also, there are reports on in-silico evaluation of glyco-
sylation, phosphorylation and palmitoylation in other vi-
ral proteins such as S1 protein from Infectious Bronchitis 
Virus (IBV), and they finally interpreted that there is dif-
ferences in number and location of mentioned proper-
ties between isolates but most of the glycosylation, phos-
phorylation and Palmitoylation sites were conserved 
within specific genotypes (51). These conserved residues 
are crucial for the viral specific functions. Also, our re-
sults showed positions 38 and 42 palmitoylated in E2 pro-
tein of GB virus C. Several studies reported evaluation of 
palmitoylation sites in influenza virus, HIV-1, Semliki For-
est virus and Infectious Bronchitis Virus (51), and revealed 
impact of palmitoylation on viral biology and functions. 

Structure prediction approaches have been continuous-
ly developed and they greatly accelerated and simplified 
discovery of biological features of macromolecule and 
provided a structural framework for novel and innova-

tive hypotheses. It might notice that different methods 
have different reliability, and this subject has to be taken 
into account while using their results and compare the 
prediction with an experimental result (21). Six α-helix, 12 
β-strand and 17 Coils structure were present in E2 protein 
of GB virus C. Outer membrane region has α-helix (domi-
nant structure), small β-strand as well as coil structure.
Transmembrane regions have α-helix predominantly.

The data extracted from the three-dimensional struc-
ture of a protein is essential for understanding and 
solving the details of its molecular function, and gives 
valuable knowledge for the development of effective ra-
tional strategies for experiments such as findings disease 
related mutations, site directed mutagenesis, or vaccine 
and drug design based on protein structure ( 22 ). In this 
work, we visualized positions of variability and epitopes 
in 3D structure (Figure 8). 

The predicted epitopes for T CD8+-cell (Table 3) with 
highest antigenicity (immunogenicity) for E2 protein in 
this study were AA215-223NH3-LLLDFVFVL-COOH, AA238-
246 NH3-ILLLLWWWV-COOH, AA301-309 NH3-LMFLVLWKL-
COOH, and AA170-178 NH3-KLMGSRNPV-COOH, respective-
ly. 

By comparative analysis of B-cell epitopes between 
physico-chemical and machine learning approaches re-
garding 3D/secondary structure and outer membrane 
region, the best performance was seen by Kolaskar-Tong-
aonkar algorithm. This epitope was residue 231- 296 (frag-
ment of NH3-EARLVPLILLLLWWWVNQLAVLGLPAVEAAV-
AGEVFAGPALSWCLGLPVVSMILGLANLVLYFRWL-COOH) 
(Figure 8). So, this epitope is optimal for immunization 
and diagnostic methods. 

The comprehensive analysis of a protein with impor-
tant roles has never been easy, especially when we at-
tempt to make statements from different aspects about 
this protein. In case of E2 envelope glycoprotein of HGV, 
there is no much data on its molecular and immunologi-
cal features, clinical significance and its pathogenic po-
tential in hepatitis or any other GBV-C related diseases. 
So, results of the present study may explain some of its 
structural, physiological and immunological functions 
in GBV-C virus, as well as help to better understanding E2 
protein potential of other members of Flavivirus family, 
especially HCV.
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