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Abstract

Background: Cirrhosis is recognized by a reduction in hepatocyte proliferation with an increase in fibrous tissue, which may ul-
timately lead to the development of cancerous nodules. Liver biopsy has remained the gold standard for confirming liver fibrosis
stages, but there are not any nonreversible and specific therapeutic targets in advanced cirrhosis. In the present study, we used the
NMR method to find potential therapeutic markers in serum of HCV - cirrhotic patients with advanced stage.
Methods: A metabolic profiling study was conducted using 2 groups: decompensated HCV-cirrhosis patients (n = 21) and healthy
controls (n = 18). 1H nuclear magnetic resonance (NMR) approach was used to obtain the serum metabolic profiles of the samples.
The acquired data were processed by the multivariate principal component analysis (PCA) and orthogonal partial least squares dis-
criminant analysis (OPLS-DA). Moreover, metabolic pathways were determined using MetaboAnalyst 3.0.
Results: Specifically, 16 metabolites showed alteration between the 2 groups. Compared with healthy controls, a number of metabo-
lites showed increased concentration in serum of decompensated HCV-cirrhosis such as succinic acid, isovaleraldehyde, citrulline,
propanal and cinnamaldehyde, while several others were observed in decreased levels in the decompensated HCV-cirrhosis such
as valine, glutamine, trimethylamine, lactate, proline, aspartate, lipid, VLDL, isoleucine, fucose, and glutamate. Aminoacyl-tRNA
biosynthesis, alanine, aspartate, glutamate metabolism and arginine, and proline metabolism are the most significant pathways
associated with advanced HCV- cirrhosis.
Conclusions: Metabolomic profiling through NMR can identify the metabolic disturbances in advanced HCV-cirrhosis. Aberrant
amino acid biosynthesis may be the hallmark with increasing severity of cirrhosis as well as alterations in energetic metabolism.
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1. Introduction

Cirrhosis is recognized by reduction in hepatocyte pro-
liferation with an increase in fibrous tissue, which may ul-
timately lead to the development of cancerous nodules (1).
Hepatitis C virus (HCV) infection is one of the causes of cir-
rhosis and one of the most serious global health problems
that is growing worldwide (2). Studying cirrhosis is imper-
ative because of (i) its high mortality rate worldwide, re-
sulting in 1.2 million deaths in 2013 (3) and a 10-year mortal-
ity rate of 34% to 66%, depending on the cirrhosis (4); and
(ii) approximately 70% to 90% of patients with hepatocel-
lular carcinoma (HCC) have an established background of
chronic liver disease and cirrhosis (5). Data from studies
have suggested a paradigm for the pathogenesis of cirrho-
sis involving alterations of oxidative stress that provoke
the inflammatory and apoptotic reactions in the genera-

tion of cirrhosis (6). Unfortunately, these biomarkers are
not liver specific and still require extensive validation. In
fact, liver biopsy, as an invasive method, is still the gold
standard for confirming liver fibrosis stages (7), moreover,
there are not any nonreversible and specific therapeutic
methods to treat advanced cirrhosis (8). On the other
hand, treating patients with decompensated cirrhosis is
complex, and most of them would need liver transplanta-
tion to survive longer (9). One of the reasons for therapeu-
tic failure may be the ambiguity and complexity of molec-
ular mechanisms that cause liver disorder, making it irre-
versible (10). Several techniques have been developed to
survey molecular alteration to clarify the pathogenesis of
diseases (11). One of the powerful tools in biomarker dis-
covery is metabolomics that can illuminate the underly-
ing biology and discover clinical markers of diseases us-
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ing bioinformatics pathway analysis (12). In recent years,
some metabolomics studies in biomarker discovery have
been reported on various diseases by our group (13-16). In
the present study, we used the NMR method of investiga-
tion and the serum metabolic profile of HCV-cirrhotic pa-
tients with decompensated stage to find new markers in
the serum of patients; this may be helpful in further un-
derstanding the nature of long-term effects of HCV virus.
These findings may improve patient care and find suitable
therapies.

2. Methods

2.1. Patients and Collection of Serum Samples

The sample collection of decompensated HCV-
cirrhosis was conducted in gastroenterology and liver
diseases research center of Taleghani and Loghman Hakim
hospitals affiliated to Shahid Beheshti University of Med-
ical Sciences. In total, 21 decompensated HCV-cirrhosis
blood samples were obtained preoperatively from Novem-
ber 2014 to July 2015. Control blood samples were obtained
from 18 healthy volunteers without no history and current
diseases, a habit of alcohol consumption, or smoking.
Decompensated cirrhosis was defined as the presence of
the following 5 criteria: hypoalbuminemia, hyperbiliru-
binemia, ascites, peripheral edema of noncardiac, or
renal origin (17) and were evaluated according to clinical
examinations. The baseline clinical characteristics of the
cirrhotic patients and controls are summarized in Table 1.
All patients were positive for hepatitis C antigen for anti-
HCV antibody and HCV RNA RT- PCR. The severity of liver
disease was calculated according to the model for end
stage liver disease (18). Patients with the past or current
hepatocellular carcinoma, NAFLD, NASH, alcoholic, dia-
betes, cardiovascular disease, and kidney disease, or any
other viral infection, hepatitis delta, or hepatitis B virus
were excluded from the present study.

The amount of blood collected was 5ml for each sam-
ple. All samples were incubated for 30 minutes at room
temperature and centrifuged at 2000 g for 10 minutes at
25°C. The golden yellow supernatant was collected and
stored in aliquots at -80°C until NMR experiments. The pro-
tocols of this study were approved by the ethics committee
of Shahid Beheshti University of Medical Sciences (SBMU).

2.2. 1H NMR Acquisition and Data Processing

For NMR analysis, serum samples were left to thaw;
600 µL serum samples were each diluted by 100 µL
D2O (deuterium oxide, 99.9% D, Aldrich Chemicals Com-
pany) to provide a field frequency lock. The experimental
data consisted of 39 serum samples including 21 samples

from decompensated HCV-cirrhosis patients and 18 from
healthy controls. The NMR spectra were acquired using
a Bruker Avance DRX 600 spectrometer, operating at 500
MHz at 300 K using the Carr-Purcell-Meiboom-Gill (CPMG)
spin echo sequence to facilitate the detection of low molec-
ular weight species (19). 1H-NMR spectra in the region of
d 0.2 - 10 were subdivided into integrated regions of 0.02
ppm width, then, data were normalized and aligned using
the ProMetab software (ProMetab- Version 3) (20) in MAT-
LAB (Version 6.5.1, The MathWorks, Cambridge, UK). The
spectra between 4.2 and 5.5 ppm containing residual wa-
ter were removed from data.

2.3. NMR Statistical Analysis

SIMCA (SIMCA 14.0, Umetrics, Ume, Sweden) and SPSS
16.0 (SPSS, Inc., Chicago, IL) were used for all analysis. Mul-
tivariate statistics including unsupervised PCA and super-
vised OPLS-DA were performed. Analysis of the metabolite
signals in the 1H NMR serum profiles was first conducted
using unsupervised PCA to decrease the dimensionality of
data. After an initial overview of the PCA analysis, we ob-
tained the specific discriminant information between the
2 groups by OPLS-DA model (21, 22). Models were tested by
10-fold cross validation using R2 and Q2 parameters, where
R2 provides a measure for how much variation is repre-
sented by the model and Q2 for the goodness of prediction.
The area under the curve (AUC) represented the discrimi-
natory ability of this metabolite as a potential biomarker,
with values close to 1 implying a better classification. A
significant metabolite was considered according to fold
change ≥ 1.5.

2.4. Pathway Analysis

Analysis of metabolic pathways was conducted by
MetaboAnalyst 3.0 (www.metaboanalystca/). To identify
the most relevant pathways, p-values and false discovery
rate (FDR) parameters less than 0.05 were considered.

3. Results

3.1. Discrimination Between Decompensated HCV-Cirrhosis and
Healthy Controls by NMR-Based Metabolic Profiling

The CPMG spectrum of the serum sample from de-
compensated HCV-cirrhosis identified 16 different metabo-
lites based on their chemical shifts through an online
database (http://hmdb.ca) and previous literatures. At
first, the serum metabolic profiles were analyzed using
unsupervised PCA. According to the established PCA mod-
els, 4 serum samples were obtained from decompensated
HCV-cirrhosis and found to be outliers and were removed
(In In the obtained result, one serum sample from the
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Table 1. Characteristics of Patients With Decompensated HCV- Cirrhosisa

Parameters Control DecompensatedHCV-Cirrhosis

Age, y 50 ± 2.0 56 ± 1.2

Gender

Male 14 17

Female 4 4

ALT, U/L 29.5 ± 4 81.4 ± 12.5

AST, U/L 23.1 ± 11.6 137.8 ± 53.9

Total bilirubin,µmol/L 16.9 ± 3.5 46.1 ± 10.7

ALB, g/L 45.8 ± 11.2 30 ± 15.7

INR 1.0 ± 0.08 1.4 ± 0.1

TP, g/L 69 ± 9.6 58 ± 4.5

MELD score - 14.5 ± 6.5

Abbreviations: ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; INR, international normalized ratio; MELD, Model for end stage liver dis-
ease; TP, total protein.
aValues are expressed as mean ± standard deviation.

mentioned group was determined to be an outlier and
consequently removed for further investigation (data not
shown). Figure 1A displays the PCA score plots of decom-
pensated HCV-cirrhotic patients and healthy controls, with
an R2X = 0.801 and a Q2 = 0.575. The PCA was followed
by OPLS-DA, which focused more on discriminatory varia-
tions. Then, to better understand the different metabolic
patterns and to detect potential biomarkers between the 2
groups, we conducted OPLS-DA. The OPLS-DA score plots re-
vealed that the decompensated HCV-cirrhosis were statis-
tically distinguishable from healthy controls (R2X = 0.78,
R2Y = 0.52 and Q2 = 0.5) (Figure 1B). Furthermore, a per-
mutation test was used to validate this model. The val-
ues of R2 and Q2 values derived from the permutation test
were lower than the original ones, indicating the valida-
tion of the OPLS-DA model Figure 1C. Moreover, ROC curve
was plotted based on the predicted response values and its
corresponding AUC was 0.91 (Figure 2). The area under the
curve (AUC) represented the discriminatory ability of this
metabolite as a potential biomarker, with values close to 1
implying a better classification.

Compared with healthy controls, a number of metabo-
lites showed increased concentration in serum of decom-
pensated HCV-cirrhosis such as succinic acid, isovaleralde-
hyde, propanal, cinnamaldehyde, and citrulline, while
several others were observed in decreased levels in the
decompensated HCV-cirrhosis such as valine, glutamine,
trimethylamine, lactate, proline, aspartate, lipid, VLDL,
isoleucine, fucose, and glutamate (Table 2).

3.2. Pathway Analyses

The most significant altered metabolic processes be-
tween decompensated HCV-cirrhosis and healthy controls,
based on metaboanalyte 3.0, were Aminoacyl-tRNA biosyn-
thesis, Arginine and proline metabolism, alanine, and as-
partate and glutamate metabolism (Figure 3).

4. Discussion

4.1. Determining Metabolic Changes According to 1H NMR Spec-
tra

The present data allowed us to draw several conclu-
sions. First, it evaluated whether a metabolomics ap-
proach by 1H NMR can discriminate between healthy and
advanced cirrhosis patients suffering from HCV. Second, it
seems that changes in serum metabolomics profiles reflect
activation or impairment in several biologic pathways,
mainly energetic metabolism. The alteration metabolites
are lipid, branched-chain amino acids (Valine, Isoleucine),
acidic amino acids (Glutamate, Aspartate), aliphatic amino
acids (Proline), aldehydes (valeraldehyde, propanal, cin-
namaldehyde), dicarboxylic acid (succinic acid), choline-
associated metabolites (trimethylamine (TMA)), sugar (fu-
cose), lipoproteins (VLDL), and alpha-hydroxy acid (lac-
tate). Figure 4 illustrates the significant changed metabo-
lites in decompensated HCV-cirrhosis sera versus healthy
controls and their association with other molecules in the
cell.
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Figure 1. Multivariate Statistical Analysis of NMR-Based Metabolic Profiling

A, PCA score plot with all variable unit variance scaled (healthy has been shown with triangle shape and circle with decompensated HCV-cirrhosis.); B, OPLS-DA Score plot of
dcompensated HCV-cirrhosis group versus healthy control; (blue circle, patient, green circle, healthy); C, A 200 permutation test for OPLS-DA model healthy controls.

Table 2. Differential Serum Metabolites Between Decompensated HCV-Cirrhosis and Controls by NMR

No. Metabolites Direction of Variationa δ1H, p.p.m.b Fold Change

1 Valine ↓ 0.99, 3.6 1.5

2 Gutamine ↓ 2.09 1.5

3 Trimethylamine ↓ 2.83 1.5

4 Lactate ↓ 1.33 1.6

5 Proline ↓ 2.05, 3.33 1.7

6 Aspartate ↓ 2.81 1.8

7 Citrulline ↑ 1.57 2.3

8 Lipid ↓ 2.23, 0.93 2.1

9 VLDL ↓ 1.57, 1.29 2.3

10 Isoleucine ↓ 0.93 2.4

11 Fucose ↓ 1.31 2.5

12 Glutamate ↓ 2.03 1.5

13 Iso- Valeraldehyde ↑ 0.95, 2.39, 9.65 2.2

14 Propanal ↑ 2.55, 9.69 1.8

15 Cinnamaldehyde ↑ 9.66, 9.67 1.9

16 Succinic acid ↑ 2.39 1.9

a Increase or decrease in decompensated HCV-cirrhosis compared to healthy controls.
b Chemical shift of signal used for quantification.

4.2. Mitochondrial Pathways

Disorder of amino acid metabolism are found in some
liver diseases at the metabolomics level (23-25). We defined
decreased amounts of valine and isoleucine, glutamine,

and glutamate in sera of decompensated HCV-cirrhosis
compared to healthy controls. These amino acids are re-
lated to intermediate components of TCA cycle, an essen-
tial pathway for the amino acids metabolism (26, 27). Our
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Figure 2. Validation of Multivariate Models of NMR Data; PLS-DA Model; Serum
Metabolite Biomarkers by OPLS-DA Yielded an AUC Value of 0.91

results are consistent with those of the previous studies on
cirrhosis and liver diseases (28, 29). The results of amino
acid imbalance on TCA cycle in the serum of patients with
advanced cirrhosis can prove the hypothesis of impair-
ment of TCA cycle (30). In addition, decreased levels of glu-
tamine may reflect elevation of hepatic dysfunction and
destruction of hepatocytes because glutamine is metabol-
ically linked to the ammonium detoxification in the body
by the hepatocytes (31). Succinate, an intermediate in the
citric acid cycle, increased in decompensated HCV- cirrho-
sis serum versus healthy controls in our study, which may
be caused by the reduced utilization of succinate into the
TCA cycle due to impairment of this important cycle.

Moreover, we found energy abnormalities including
elevated mitochondrial lipid peroxidation in decompen-
sated HCV-cirrhosis. The increase in serum aldehydes (iso-
valeraldehyde and propanal) and the decrease in serum
lipid demonstrated more activation of lipid peroxidation.
The intermediate products of lipid peroxidation are reac-
tive aldehydes beside the free radicals (32). The present
study demonstrated that lipid peroxidation may increase
in decompensated HCV-cirrhosis and suggested that oxi-
dant stress might contribute to the deterioration of liver in
advanced liver diseases, which is compatible with Pratico D
et al. results (32). The previous study, which reported an in-
crease in isovaleraldehyde in hepatic encephalopathy (33),
could confirm the above hypothesis.

4.3. Cytosolic - Mitochondria Pathway

An increased level of citrulline was shown in decom-
pensated HCV-cirrhosis. Citrulline is a non-essential amino
acid, produced from carbamoyl phosphate and ornithine
by ornithine transcarbamoylase, and has a main role in
the urea cycle. Our hypothesis was that the destruction of

urea cycle and reduction of aspartate level are responsible
for the increased level of citrulline in decompensated HCV-
cirrhosis. Accumulation of ammonia in the cirrhotic pa-
tients can be another reason for confirming our hypostasis
in impairment of the urea cycle. Urea cycle is a metabolic
pathway that removes ammonia by converting it to the
neutral substance urea (34, 35), and its disorder function
can lead to liver encephalopathy (35). Impairment of urea
cycle and increase in citrulline level emphasize the previ-
ous results that showed significant reductions in activa-
tion of most of the urea cycle enzymes in patients with cir-
rhosis (36).

4.4. Cytosolic Pathway

Lactate level was lower in the sera of patients with ad-
vanced HCV-cirrhosis versus healthy controls. Consump-
tion of alternate fuels in cirrhosis patients has been at-
tributed to reduced availability of hepatic glycogen (37). In
neo-gluconeogenesis, transformation of lactate into glu-
cose occurs to meet the body’s energy needs. Decreased
level of lactate in the sera in our study seems to confirm
the more activity of this important energetic pathway in
patients with advanced cirrhotic, which was previously
stated by Bugianesi et al. (37). It can be hypothesized that
the ratio of gluconeogenesis to glycolysis may elevate in
HCV-decompensated cirrhosis, which causes reduction in
serum lactate. In the present study, proline decreased in
advanced HCV-cirrhosis sera compared with healthy con-
trols. Proline is one of the most consumed amino acids
to form the collagen molecule (38). The collagen content
at the liver cirrhosis was more than five-fold higher than
the normal state (39) due to elevation of Type I collagen
gene transcription (40). The decrease in proline level in
patients’ sera can be explained by the high consumption
of proline in more collagen biosynthesis in liver cirrhosis.
Results in HCC by Chan W (41) and evaluations of patients
with liver cirrhotic ascites by Yang T showed decreased in
proline (42). Our study showed that the levels of VLDL
were reduced in the decompensated LC group compared
to healthy controls. Thus, it can be hypothesized that the
blood lipid level decreases in the serum of decompensated
LC patients because the liver tissue loses some degree of its
lipid synthesizing ability in the later stage of cirrhosis (43).

The present study has focused on metabolomics pro-
file of advanced cirrhosis based on HCV to introduce
biomarker(s) for better treatment of patients. In future
studies, metabolomics can be used to compare the com-
pensated and decompensated cirrhosis based on HCV to
achieve the best opportunity for therapy.
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Figure 3. Pathway analysis by MetaboAnalyst overview showed altered metabolic pathways in serum from decompensated HCV-cirrhosis
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A, the metabolic pathways are represented as circles according to their scores from enrichment (vertical axis, shade of red) and topology analyses (Pathway impact, horizon-
tal axis, and circle diameter). MetaboAnalyst 3.0 showed Aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, arginine and proline metabolism as
significant related pathways; B, statistics for pathways with major changes based on the P value and FDR (P value < 0.05 and FDR < 0.05).

Figure 4. Illustration of Significantly Changed Metabolites in Decompensated HCV-Cirrhosis Sera and Their Association With Other Molecules in the Cell

Red color indicates significantly increased metabolites, and gray color indicates significantly decreased metabolites.

4.5. Conclusions
Metabolomic profiling through NMR can identify the

metabolic disturbances in advanced HCV-cirrhosis. Aber-

rant amino acid biosynthesis may be a hallmark with an
increase in the severity of cirrhosis as well as alterations
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in energetic metabolism. Moreover, differently changed
metabolites may serve as biomarkers that can be used
to monitor the changes in patients with decompensated
HCV- cirrhosis.
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