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Abstract

Context: End-stage liver disease (ESLD), the terminal phase of chronic hepatic disorders, is characterized by profound liver

dysfunction and heightened susceptibility to secondary infections. Cirrhosis, a key manifestation of ESLD, impairs innate and

adaptive immunity via structural and functional hepatic abnormalities.

Evidence Acquisition: A detailed literature review was conducted to synthesize recent advances in understanding the

immunological mechanisms underlying the increased infection risk in cirrhotic patients, focusing on Kupffer cell dysfunction,

complement system deficiencies, elevated Pro-inflammatory cytokines, and impaired T-cell responses.

Results: Dysfunctional Kupffer cells exhibit impaired pathogen clearance, while defects in the complement system

compromise opsonization and phagocytosis. Elevated levels of Interleukin-2 (IL-2) disrupt the differentiation of T follicular

helper (Tfh) cells, impairing antibody production and further compromising adaptive immunity. Concurrently, aberrant

expression of HLA-DR and dysregulation of immune checkpoints reflect systemic immune exhaustion.

Conclusions: Collectively, these mechanisms increase susceptibility to infections and sepsis, highlighting the critical

interplay between innate and adaptive immune dysfunctions in compromising the body's ability to effectively respond to

pathogens.
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1. Context

Liver cirrhosis, a severe consequence of chronic liver

diseases, substantially disrupts immune homeostasis,

predisposing patients to secondary infections (1). These

infections are not just complications but also major

contributors to the high mortality rates observed in

cirrhotic patients (2). This review examines the

immunological mechanisms underlying this

vulnerability, emphasizing innate and adaptive immune

disruptions, including Kupffer cell dysfunction,

complement deficiencies, and T-cell abnormalities.

Understanding these pathways is critical for developing

targeted therapies to manage and prevent infections,

improving outcomes for patients with hepatic cirrhosis

(3).

2. Relationships Between Liver Cirrhosis and
Infection

2.1. End-Stage Liver Disease and Liver Cirrhosis

The concept of end-stage liver disease (ESLD) was

initially proposed in the 1980s, but a standardized

definition emerged only in 2018 (2). End-stage liver

disease encompasses advanced hepatic insufficiency

caused by chronic injuries or conditions, such as acute-

on-chronic liver failure (ACLF), decompensated

cirrhosis, and hepatocellular carcinoma (4). This

definition combines morphological and functional

aspects of the liver, emphasizing that ESLD represents

the terminal stage resulting from cumulative chronic

liver injuries. It is characterized by progressive
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deterioration of liver function and progression to

decompensation. Among patients with ESLD, liver

cirrhosis is a common condition, representing a

progressive liver disease caused by one or more

etiologies, which can be divided into a compensated

stage and a decompensated stage (5). Globally, cirrhosis-

related mortality rose by 47.15% from 1990 to 2017, with a

12.02% increase in China (6). During the compensated

stage, patients with liver cirrhosis often exhibit no

obvious clinical symptoms and maintain a relatively

good quality of life. However, as the disease progresses

to the ESLD stage, clinical manifestations such as

hypersplenism, gastrointestinal bleeding, ascites,

jaundice, sepsis, and hepatic encephalopathy may

emerge (7). Liver cirrhosis is often complicated by

infections, which accelerate the clinical progression of

the disease and lead to complications such as acute

kidney injury, organ failure, and ACLF. Infection is not

only a common complication of liver cirrhosis but also a

critical factor that exacerbates disease progression,

leading to complications such as acute kidney injury

and organ failure (8).

2.2. Secondary Infections

In patients with liver cirrhosis, the incidence of

bacterial infections is obviously greater than that in the

general population. Medical studies have shown that

the incidence of bacterial infections in hospitalized

cirrhotic patients ranges from 25% to 40%. This is 4 to 5

times higher than the incidence in the general

population. Furthermore, among patients with

decompensated liver cirrhosis, the risk of death due to

infectious complications is as high as 3.75 times greater

(9, 10). These data highlight the importance of early

diagnosis and effective management of patients with

liver cirrhosis to reduce the risk of complications and

death caused by bacterial infections. In abdominal

infections, predominant pathogens include Escherichia

coli, Klebsiella pneumoniae, and Staphylococcus aureus.

Among abdominal infections, Escherichia coli is the

most frequently encountered, followed by Klebsiella

pneumoniae, Staphylococcus aureus, Enterococcus

faecium, and Enterococcus faecalis (11). In respiratory

infections, conditioned pathogens such as

Pseudomonas aeruginosa and Staphylococcus aureus

are more common. Notably, prolonged antimicrobial

use in decompensated cirrhosis promotes drug-

resistant nosocomial infections, increasing sepsis risk

(12). Recent studies have further highlighted the

seriousness of secondary infections in liver disease

patients, as these infections can accelerate the

progression of liver cirrhosis, especially in the

decompensated stage, where patients are more

susceptible to bacterial infections (2). Spontaneous

bacterial peritonitis (SBP), one of the most frequent

infections in cirrhosis, is primarily caused by

Enterobacteriaceae and is associated with rapid

progression to sepsis (13). Invasive fungal infections

(IFIs), such as candidiasis and aspergillosis, although

less prevalent, are particularly fatal due to delayed

diagnosis and resistance to empirical antibiotics. In

various medical studies, invasive IFIs are recognized as

important causes of illness and death in patients with

decompensated liver cirrhosis (14). Among all IFIs,

Candida infections have the highest incidence rate,

followed by Aspergillus infections (15). Given the unclear

manifestation of infection and the complexity of

diagnosis, rapid confirmation is often difficult, leading

to delayed treatment and increased mortality risk.

Therefore, early recognition and treatment of IFIs are

vital for patients. To reduce mortality rates and improve

the quality of life for this population, enhancing the

understanding of these infections, improving

diagnostic techniques, and developing effective

prevention and treatment strategies are essential.

3. Immune Mechanisms and Susceptibility in
Patients with Cirrhosis

Structural alterations in the liver that contribute to

cirrhosis development include persistent hepatocellular

injury, inflammation, and fibrotic remodeling (16). The

interaction between the immune system and liver

function is particularly intricate. Patients with cirrhosis

often show susceptibility and adverse prognoses

following sepsis due to disruptions in immune

regulatory mechanisms (17, 18). Inflammatory reactions

driven by the immune system have a crucial impact on

the development of cirrhosis, and the coexistence of

cirrhosis and elevated portal pressure exacerbates

immune cell dysfunction and injury (19). The

immunodeficient state in patients with decompensated

cirrhosis involves abnormalities in various immune

cells and factors, including IL-2, Kupffer cells (hepatic

macrophages), monocytes and neutrophils, and the

complement system (20). These abnormalities weaken

the resistance to secondary bacterial infections in
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Figure 1. Abnormal immune function increases the risk of infection in liver cirrhosis patients

cirrhotic patients, escalating the risk of complications.

Cirrhotic patients often suffer from various functional

abnormalities of innate and adaptive immunity, which

lead to a decrease in their resistance to secondary

bacterial infections and an increased risk of

complications (21). See Figure 1 for details.

3.1. Inherent Immune Abnormalities

3.1.1. Kupffer Cell Dysfunction

Immune cells, especially Kupffer cells and recruited

macrophages, are key regulators of liver inflammation

and play critical roles in the progression or regression

of liver fibrosis. Upon hepatocyte injury, danger-

associated molecular patterns (DAMPs) are released,

which further activate Kupffer cells and recruit

infiltrating macrophages (22). Once activated,

macrophages release many cytokines that can directly

damage the hepatic parenchyma, thereby impacting the

overall health of the liver. Hepatic macrophages account

for 90% of the total macrophages in the human body

and exhibit significant heterogeneity, including

resident macrophages and monocyte-derived

macrophages (MDMs) (23). Kupffer cells, the resident

macrophages of the liver, are predominantly distributed

within hepatic sinusoids. Originating from yolk sac-

derived progenitor cells, they colonize liver tissue

during embryonic development and are also

replenished through differentiation from bone marrow-

derived monocytes. As the primary macrophages in the

liver, Kupffer cells maintain hepatic homeostasis

through self-renewal, phagocytosis of pathogens and

cellular debris, and regulation of iron metabolism (24).

Under normal conditions, Kupffer cells efficiently

phagocytose and clear pathogens, bacteria, toxins, and

other harmful substances from the bloodstream or

intestine, maintaining hepatic health (25). The

interaction between multiple cell types and molecules

can cause liver cirrhosis, with macrophages, as

important members of the immune system, playing a

central role in this process. Hepatic macrophages

promote liver fibrosis by increasing the survival rate of

activated hepatic stellate cells (HSCs) in an NF-κB-

dependent manner (26). Liver fibrosis is primarily

driven by the activation of HSCs, a process triggered by

persistent pathological stimuli such as chronic

inflammation or metabolic stress. Nonparenchymal

cells are activated, leading to abnormal expression of

fibrillar proteins and related cytokines and triggering

https://brieflands.com/articles/hepatmon-159178


Jiang S et al. Brieflands

4 Hepat Mon. 2025; 25(1): e159178

the proliferation or decomposition imbalance of fibrous

tissue, resulting in excessive deposition of fibrous

structures and the development of liver fibrosis, which

may eventually progress to liver cirrhosis or liver cancer

(27, 28). Furthermore, macrophage-derived

transforming growth factor-β (TGF-β) has been

identified as a key molecule that initiates HSC

activation. Some studies have shown that Toll-like

receptor (TLR-4 and TLR-9) signaling pathways mediate

crosstalk between inflammatory and fibrogenic

pathways (29). Under diseased conditions, the liver

primarily relies on bone marrow-derived macrophages,

which are recruited to the liver after the activation of

HSCs and Kupffer cells and become important sources

of replenishment and regeneration after hepatic

macrophage depletion. The critical step in liver fibrosis

is the activation of HSCs, which transform into

myofibroblasts after hepatocyte injury, becoming the

primary cellular source of fibrosis (30). Most studies

indicate that under the combined action of various

pathogenic factors, Kupffer cells in the liver are

activated and promote HSC activation and extensive

extracellular matrix synthesis under the influence of

multiple pathogenic factors and external chemical

mediators (31, 32). The pathways involved in HSC

activation are complex and diverse and can be roughly

divided into intracellular and extracellular sources.

Various cellular signaling pathways can activate HSCs,

such as nuclear receptors, G protein-coupled receptors,

cell proliferation and fibrosis pathways, innate immune

signaling pathways, adipocytokines and cytokines, and

genetically related signal transduction pathways (33).

Additionally, extracellular stimuli can promote HSC

activation by secreting cytokines or activating signaling

pathways (34, 35). In normal livers, Kupffer cells, as

sentinel cells, dominate and maintain hepatic

homeostasis. However, under pathological conditions,

these cells undergo phenotypic changes, secrete anti-

inflammatory or proinflammatory factors, and recruit

more macrophages, namely, BMDMs, to the liver. These

BMDMs are similar to Kupffer cells in terms of function

and plasticity and have a crucial impact on the

development and resolution of liver diseases (35).

Recent studies on intracellular functional

reprogramming have demonstrated marked

upregulation of follistatin-like protein 1 (FSTL1) in

fibrotic liver macrophages. These macrophages inhibit

proinflammatory M1 polarization and NF-κB pathway

activation both in vivo and in vitro (29). Follistatin-like

protein 1directly binds to pyruvate kinase M2 (PKM2)

through its FK domain, a critical interaction that

promotes PKM2 phosphorylation and nuclear

translocation. This binding mechanism not only

reduces ubiquitination of PKM2 but also enhances

glycolytic activity, ultimately leading to increased PKM2-

dependent glycolysis and subsequent M1 polarization.

Of particular significance, PKM2 serves as a key mediator

of aerobic glycolysis - a metabolic process strongly

associated with oncogenesis and inflammatory

pathways (36). Recent evidence further demonstrates

that PKM2 governs metabolic reprogramming in

macrophages during inflammatory responses. Through

its interaction with hypoxia-inducible factor 1α (HIF-1α),

this enzyme activates HIF-1α-dependent transcriptional

programs that are indispensable for sustaining aerobic

glycolysis in macrophage populations. Furthermore,

pharmacological activation of PKM2 (DASA-58) can

alleviate FSTL1-regulated glycolysis and inflammation to

a certain extent (37). Collectively, this study revealed that

macrophage FSTL1 promotes liver fibrosis progression

through intracellular PKM2 reprogramming in

macrophages, inducing M1 polarization and

inflammation (29). See Figure 2 for details.

In cirrhosis, impaired liver function and altered

hemodynamics lead to a notable decline in both the

number and activity of Kupffer cells, compromising

pathogen clearance (38). Additionally, Kupffer cell

activity is partially dependent on the activity level of

plasma fibronectin. As liver function decreases, plasma

fibronectin activity decreases, further impairing Kupffer

cell function and allowing the accumulation of gut-

derived bacteria and endotoxins in the body, increasing

the risk of infection. From a clinical standpoint, this

dysfunction highlights the potential benefit of

therapeutic approaches aimed at restoring Kupffer cell

function or targeting gut-derived endotoxemia, such as

probiotics, rifaximin, or fecal microbiota

transplantation in cirrhotic patients.

3.1.2. Defects in the Complement System

The liver plays a crucial role in the immune defense

of the body, and the complement system, an essential

component of the innate immune system, performs a

critical function when liver function is severely

impaired. The complement system participates in

immune responses, in turn enhancing the body's ability

https://brieflands.com/articles/hepatmon-159178


Jiang S et al. Brieflands

Hepat Mon. 2025; 25(1): e159178 5

Figure 2. Kupffer cell dysfunction leading to liver cirrhosis

to clear pathogens. However, in liver cirrhosis, impaired

hepatocyte function disrupts the synthesis and

regulation of complement proteins, resulting in

deficiencies in complement activity and synthesis.

Specifically, a reduction in crucial complement factors

directly affects the normal function of serum

opsonization, increasing the susceptibility of cirrhotic

patients to bacterial infections. Susceptibility to

infections in cirrhotic patients is intimately linked to

disruptions in immune mechanisms. Factors such as

elevated IL-2 levels, functional defects in Kupffer cells,

abnormal immune function, and defects in the

complement system, all stemming from liver cirrhosis,

collectively contribute to a marked reduction in these

patients' resistance to bacterial infections. Furthermore,

the abnormal activation of immune-mediated

inflammatory responses exacerbates the risk of

infection, leading to poor patient outcomes.

3.2. Adaptive Immune Abnormalities

3.2.1. Impairment of T Follicular Helper Cells

T follicular helper (Tfh) cells, a specialized subset of

CD4+ T cells, are essential for maintaining optimal

immune function. These cells express the CXCR5

receptor, PD-1 molecules, and ICOS protein, all of which

facilitate their interaction with B cells. Additionally, Tfh

cells produce the cytokine IL-21 and regulate

transcription factors such as C-MAF and BATF. The

development of these cells is influenced primarily by

the transcription factor BCL-6, with in vivo studies

indicating that STAT5 plays a pivotal role in T-cell

development and exerts an inhibitory regulatory effect

on the generation and function of CD4+ Tfh cells (17).

Specifically, when STAT5 levels are insufficient, the

expression of Blimp1 is altered, leading to increased

expression of Tfh cell-specific genes, such as BCL-6, MEF

factors, BATF, and IL-21. IL-21 and BCL-6 regulate Tfh cell

differentiation and maturation. IL-21 promotes Tfh cell

differentiation and enhances the expression of surface

CXCR5, while BCL-6 is critical for the migration of Tfh

cells to lymphoid follicles and the formation of B-cell

germinal centers (39). Refer to Figure 3 for a visual

illustration of this mechanism.

In patients with cirrhosis complicated by chronic

endotoxemia, dysregulation of immune responses is

evident, characterized by elevated levels of both

proinflammatory and anti-inflammatory cytokines in

the serum (40). A significant increase in the serum IL-2

level impairs the differentiation of Tfh cells by

upregulating the transcription factor Blimp-1 and

suppressing TCF-1 expression (41), ultimately
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Figure 3. Mechanism by which IL-2 elevation damages T follicular helper (Tfh) cells

compromising immune function. Once Tfh cells are

impaired, the maturation of central B cells and the

production of high-affinity antibodies are affected,

leading to reduced humoral immune efficiency and an

increased risk of infection. Nevertheless, studies

supporting this mechanism are limited by small sample

sizes and reliance on animal models, underscoring the

need for broader clinical trials to validate these findings

in human populations. Therefore, Tfh cells play a vital

role in adaptive immunity, not only by promoting the

proliferation of B cells and immunoglobulin class

switching to stimulate the formation of germinal

centers, which drives the differentiation of B cells into

plasma cells and memory B cells but also by secreting IL-

21 to enhance CD8+ T-cell function, thus contributing to

cellular immunity.

3.2.2. Aberrant Expression of HLA-DR Molecules

Immunodeficiency in cirrhosis is caused by multiple

factors, including the persistent stimulation of

microbial- and damage-associated molecular patterns

(MAMPs and DAMPs), reduced synthesis of nutritional

factors by the liver, splenomegaly with immune cell

sequestration in the spleen, and the underlying etiology

of cirrhosis (e.g., alcohol or viral infection). This

immunodeficiency culminates in “immune paralysis”,

thereby elevating the risk of bacterial infections (42).

The term “immune paralysis” is defined by the

downregulation of HLA-DR expression on monocytes,

and it is typically associated with immune

dysregulation and a greater incidence of bacterial

complications. In patients with decompensated

cirrhosis, peripheral blood monocytes spontaneously

produce a variety of proinflammatory cytokines,

whereas monocytes from healthy individuals secrete

only limited amounts of IL-8 and IL-6. These findings

indicate a proinflammatory phenotype in cirrhosis.

Notably, T-cell receptor (TCR) activation in cirrhotic

patients is associated with an increased number of HLA-

DR+ T cells in peripheral blood. Although these cells

coexpress programmed death receptor-1 (PD-1), their

function is impaired. Further studies revealed that the

enrichment of HLA-DR+CD8+ T cells in cirrhosis patients

is associated with increased expression of immune

checkpoint molecules (PD-1, CTLA-4, and TIM-3) on their

surface, providing further evidence of T-cell dysfunction

in these patients, which increases the risk of concurrent

infections (43).

4. Summary and Prospects

As one of the largest visceral organs in the human

body, the liver plays a crucial role in maintaining
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immune balance and eliminating pathogenic

microorganisms. Liver diseases compromise hepatic

immune function, heightening susceptibility to

microbial pathogens and elevating the risk of secondary

infections. Therefore, there is an urgent need to explore

therapeutic strategies for secondary infections in

patients with liver diseases to improve the clinical

management of patients. Secondary infections in

patients with liver cirrhosis remain a major clinical

challenge with profound implications for patient

outcomes. This review highlights that immune

disorders caused by liver cirrhosis, such as elevated IL-2

levels, Kupffer cell dysfunction, immune dysfunction,

and complement system defects, are crucial factors that

increase the risk of secondary infections in patients. In

the future, prevention and treatment strategies for

secondary infections in patients with liver cirrhosis

should focus on the following aspects. First, it is

essential to further improve the assessment system of

the immune status of patients with liver cirrhosis to

achieve accurate prediction of infection risk. Second, we

should explore therapeutic interventions targeting

immune dysregulation by developing novel

immunomodulatory drugs to restore immune balance

in patients. Furthermore, we should strengthen the

management of infection-related complications in liver

cirrhosis patients, improve the level of early diagnosis

and treatment, and reduce infection-related mortality

rates. Secondary infections in cirrhosis arise from

multifactorial immune dysregulation. Elucidating these

mechanisms is critical to improving survival. Ongoing

research, we aim to find more effective prevention and

treatment strategies to improve the prognosis and

quality of life of patients with liver cirrhosis.
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