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Abstract

Background: The enzyme ALAD (delta-aminolevulinic acid dehydratase), encoded by the ALAD gene, catalyzes the synthesis of
porphobilinogen. The 177G>C (rs1800435) polymorphism participates in the hereditary deficiency of porphobilinogen synthase
to cause acute lead poisoning.
Objectives: The current study aimed at investigating the allelic frequency of the enzyme ALAD in patients with non-alcoholic fatty
liver disease (NAFLD) compared to the control group.
Methods: The fatty liver index (FLI) algorithm was used to diagnose NAFLD in participants of a prospective cohort of the Diges-
tive Diseases Research Institute (DDRI). The ALAD genotypes, ALAD1 and ALAD2, were identified in 100 patients with NAFLD and 200
healthy controls using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP).
Results: The C-allele of ALAD rs1800435 frequency was 5.5% in the group of patients with NAFLD compared to 3.3% in the control
group, without significant differences (P = 0.37); however, alleles were in the Hardy-Weinberg equilibrium (P > 0.05). Serum ALT
level was considerably higher in the ALAD2 carriers group than in the ones not carrying ALAD2 (29.4 ± 13.9 vs. 19.4 ± 10.1, P = 0.041).
Nonetheless, each C-allele increased the serum ALT level by 1.24 IU/L (95% confidence interval: 0.22 - 2.67; P = 0.04).
Conclusions: The 177G>C (rs1800435) polymorphism in patients with NAFLD was similar to that of the normal population; however,
it can be considered as a risk factor for serum ALT level increase.
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1. Background

Non-alcoholic fatty liver disease (NAFLD) is the most
common cause of chronic liver disease, from simple hep-
atic steatosis to steatohepatitis, which may progress to cir-
rhosis and eventually to hepatocellular carcinoma. NAFLD
is a problem of high morbidity and mortality related to the
liver, and also an increase in mortality due to cardiovas-
cular disease (CVD) and cancer (1). Serum alanine amino-
transferase (ALT) is a sensitive biomarker of hepatic injury
commonly used to screen and detect abnormal liver func-
tion and estimate levels of abnormality. The increase in
serum ALT level is more closely related to fat accumulation
in the liver and reveals histological progression of the liver.
Higher serum ALT level accompanied by echogenic liver ul-
trasonography, in the absence of any identified cause of
liver disease, suggests the diagnosis of NAFLD (2, 3).

Despite well-known risk factors for NAFLD such as ge-
netic components and life style, the underlying mecha-
nism of fatty liver is unclear (2, 4, 5). However, environmen-
tal influences such as car engine exhaust particles, met-
als, and various polychlorinated elements are significant
causes of NAFLD progression (6-8). The effect of exposure
to air pollutants on the onset of diseases is widely accepted,
and reveals a difference in the composition of fatty acids in
the liver and adipose tissue that consequently has negative
effects on health by increasing the risk of cardiovascular
disease, systemic and immune inflammation, and symp-
toms of depression (9-11). The harmful impact of air pol-
lutants is involved in the pathogenesis of fatty liver from
oxidative stress and insulin resistance leading to increased
levels of aminotransferase (12).

Delta-aminolevulinic acid dehydratase (ALAD) is a cy-
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tosolic sulfhydryl enzyme strongly inhibited by lead air-
borne particulates and generally attributed to the patho-
genesis of lead poisoning (13, 14). Human ALAD is a poly-
morphic enzyme, encoded by the ALAD gene on chromo-
some 9q34 and involved in the synthesis of heme by con-
verting aminolevulinate (ALA) to porphobilinogen (PBG).
The common variant 177G>C (rs1800435) in the exon 4 of
ALAD, which substitutes asparagine with lysine on residue
59, produces two codominant alleles ALAD1 and ALAD2 in
three genotypes of ALAD 1-1, ALAD 1-2, and ALAD 2-2 (13, 15).
It is shown that carriers of the ALAD2 (C allele) are prone
to exhaust particles to have higher blood lead concentra-
tions than the frequent ALAD1 (G allele). The electronega-
tive properties of the ALAD2 enzyme increase its affinity for
lead (16, 17).

2. Objectives

Atmospheric pollution as a major concern in urban en-
vironments affects patients with NAFLD; therefore, the cur-
rent study aimed at investigating the frequency of ALAD
genotypes, the enzyme related to air pollution that in-
creases the sensitivity to lead poisoning, in patients with
NAFLD compared to healthy individuals and the associa-
tion of the ALAD rs1800435 polymorphism with serum ALT
level.

3. Methods

3.1. Study Subjects

A total of 300 subjects (179 males and 121 females) in a
prospective cohort at a referral clinic affiliated to Tehran
University of Medical Sciences were enrolled in the cur-
rent study. The current nested case-control study was con-
ducted on 100 patients with NAFLD and 200 subjects with
normal ALT levels (< 40 U/L in males, < 34 U/L in females)
as a control group selected consecutively. The fatty liver in-
dex (FLI) algorithm was used to diagnose NAFLD according
to the formula published by Huang et al. (18). Selection of
ALT threshold values was based on previous studies to esti-
mate the upper health limits in healthy blood donors (3).
The study included subjects without a history of alcohol
abuse, autoimmune hepatitis, use of hepatotoxic drugs,
evidence of viral liver disease, tumors, cholestasis, or other
metabolic diseases of the liver. Venous blood samples after
a 12-hour overnight fasting were collected from all partici-
pants. Demographic data were obtained and the biochem-
ical parameters for each subject were tested using avail-
able standardized methods (19). The study protocol was in
accordance with the Declaration of Helsinki and was ap-
proved by the Ethics Committee of the Digestive Disease

Research Institute (DDRI), Shariati Hospital, Tehran Uni-
versity of Medical Sciences (TUMS) (ethical code: 416/780).
Written informed consent was obtained from all subjects.

3.2. Genotyping for the ALAD Polymorphism

Genomic DNAs were extracted from the blood sam-
ples using the Gentra Puregene kit (Qiagen, Alameda,
CA, USA) according to the manufacturer’s recommenda-
tions. To identify the two variants of ALAD, the poly-
merase chain reaction restriction fragment length poly-
morphism (PCR-RFLP) with specific primers to detect
MspI restriction sites (C|CG G) was performed as de-
scribed previously (15). The primers used in the ALAD
genotyping were: 5’-AGACAGACATTAGCTCAGTA-3’ and 5’-
GGCAAAGACCACGTCCATTC-3’ in amplification of a 916-base-
pair (bp) sequence. PCR products were digested with the
MspI restriction enzyme to produce dissimilar fragments
that lead to specific genotypes. The fragmented products
were then analyzed on the agarose gel. The wild type
ALAD1-1, homozygous variants ALAD 2-2 and ALAD 1-2 het-
erozygous were defined by fragments of 582, 511, and 582
bp in addition to 511 bp, accordingly. The protocol and the
condition of the PCR were as previously described (15).

3.3. Laboratory Measurements

Serum insulin was measured by ELISA (the enzyme-
linked immunosorbent assay) technique (Diesse Com-
pany, Italy). Lipid profiles, including total cholesterol (TC),
triglycerides (TG), high-density lipoprotein-cholesterol
(HDL-c), liver enzymes, and fasting plasma glucose were
tested using an autoanalyzer (Cobas c 702, Roche; Shang-
hai, China). Platelets were counted using Sysmex kx-21.

3.4. Statistical Analysis

Analysis of variance (ANOVA) was used to compare con-
tinuous variables. Chi-square test was used to compare cat-
egorical group variables and also determine if the geno-
type distribution was in the Hardy-Weinberg equilibrium.
Logistic regression analysis was used to calculate the odds
ratios of the variants for ALT level. SPSS version 15.0 (SPSS,
Chicago, IL, USA) was used to analyze data and P < 0.05 was
considered significant.

4. Results

4.1. Clinical Features of the Study Population

The general characteristics of the NAFLD and non-
NAFLD groups are shown in Table 1. The number of females
and males, mean age, and body mass index (BMI) in the
NAFLD group were respectively 42 and 58 subjects, 41.1 ±
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Table 1. Demographics and Clinical Features of Patients and Controlsa

Characteristics Patients with
NAFLD (N = 100)

Controls (N =
200)

P Value

Age, y 42.3 (11.9) 41.1 (14.2) 0.48

Gender, female/male 42/58 79/121 0.70

BMI, kg/m2 24.7 (5.4) 23.98 (4.6) 0.18

Platelet × 109 /L 304.42 (89.01) 293.70 (77.42) 0.25

ALT, IU/L 42.7 (8.3) 16.9 (5.7) 0.000

ALP, IU/L 192.5 (55.6) 169.6 (66.8) 0.03

Cholesterol, mg/dL 188.4 (40.7) 165.0 (33.6) 0.000

HDL, mg/dL 45.4 (10.1) 47.6 (10.0) 0.075

TG, mg/dL 198.3 (153.5) 112.0 (52.7) 0.000

FBS, mg/dL 98.4 (18.6) 85.6 (19.4) 0.092

Insulin, IU/mL 9.50 (5.56) 7.86 (6.24) 0.027

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; FBS,
fasting blood sugar; Hb, hemoglobin; HDL, high-density lipoprotein; TG,
triglyceride.
aValues are expressed as mean (SD).

14.2 years, and 24.7± 5.4 kg/m2 compared to 79 and 121 sub-
jects, 11.44 ± 2.99 years, and 23.98 ± 4.6 kg/m2, which were
not significantly different. The mean ALT, ALP, TG, choles-
terol, and serum insulin levels were significantly higher in
the NAFLD group than in the non-NAFLD group (P < 0.001).

4.2. ALAD Genotypes and Allele Distribution

According to the findings, 10% of the patients with
NAFLD were ALAD2 carriers with both ALAD 2-2 (1%) and
ALAD 1-2 (9%) genotypes. This rate was 6.5% in the control
group, all with ALAD 1-2 genotype, without significant dif-
ferences (P > 0.09).

The frequency of the C-allele of ALAD rs1800435 was
5.5% in patients and 3.3% in controls, with a borderline dif-
ference (P = 0.07); however, both the G- and the C-alleles
were in the Hardy-Weinberg equilibrium (P > 0.05). Table
2 revealed the allelic frequency of the ALAD rs1800435 poly-
morphism and the genotype distribution between the pa-
tients and controls.

To assess whether 177G>C (rs1800435) polymorphism
influences clinical parameters; the mean ± standard devi-
ation (SD) of the variables was compared between the carri-
ers and non-carriers of ALAD rs1800435. As shown in Table 3,
the serum ALT level was considerably higher in the ALAD2
carriers than in non-carriers of ALAD2 (29.4 ± 13.9 vs. 19.4
± 10.1, P = 0.041). However, no significant differences were
observed in other experimental features and demographic
data among the study groups (P > 0.05). Using the linear
regression adjusted for age, BMI, and gender, a significant
association was observed between the ALAD2 genotype and

the ALT level. For ALAD rs1800435, each C-allele increased
the ALT level by 1.24 IU/L (95% confidence interval (CI): 0.22
- 2.67; P = 0.04).

5. Discussion

The effects of environmental factors such as air pollu-
tion on the incidence of NAFLD along with an increase in
liver enzyme levels and consequent steatosis were previ-
ously reported (6, 9, 20). Exposure to diesel exhaust par-
ticles in diabetic obese mice is positively associated with
NAFLD, and mortality due to diabetes mellitus is probably
through increased oxidative stress (10). This situation is
important to explore the contribution of variants in ALAD
gene related to lead toxicity in common diseases such as
NAFLD. Although the ALAD rs1800435 polymorphism has
important effects on the susceptibility to toxicity of lead
particle, information on the distribution of ALAD gene
polymorphism in NAFLD subjects is not provided. Further-
more, there was no evidence to demonstrate the distribu-
tion of genetic variants of the ALAD genotypes in the Ira-
nian population.

The current study results showed that the distribution
of ALAD genotypes in patients with NAFLD compared to
healthy subjects had no significant differences and also al-
lelic variations of ALAD locus showed similar frequencies in
both study groups. Previous studies confirmed that ALAD2
carriers are generally more likely to have a high blood lead
level (14, 21, 22); however, blood lead was not measured in
the current study. Though, carriers of ALAD 177G>C vari-
ants in the current study showed an increase in serum ALT;
therefore, it could be evidence for an association between
ALAD genotypes and predisposition to NAFLD. The serum
ALT level is a sensitive indicator and one of the key tests
to recognize, screen, and follow-up the patients with hep-
atitis. The significance of ALT activity as an index of liver
damage was examined in previous studies (23, 24). Further-
more, the allelic frequency of ALAD in the current study was
very similar to that of previously reported in Caucasian
and Asian populations with distribution of 92% for ALAD
1-1 and 8% for ALAD 1-2 (22, 25). Therefore, the current study
results suggested a consistency in the distribution of ALAD
177G>C (rs1800435) variants in the Iranian population.

5.1. Conclusions

In conclusion, although there was no difference in the
distribution of ALAD genotypes among the patient groups
with controls; however, ALAD2 carriers had a higher serum
ALT level. Air pollution has the most important effects on
human health, causing numerous diseases and leading to
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Table 2. Distribution of the Frequency of Genotypes and Alleles in the Study Groups

Variantsa Patients with NAFLD (N = 100) Controls (N = 200) P Value

ALAD 177G>C (rs1800435) 0.07

Genotype N GF (%) N GF (%)

GG 90 90 187 93.5

CG 9 9 13 6.5

CC 1 1 0 0

Allele N AF (%) N AF (%)

G (ancestral) 189 94.5 387 96.7

C (minor) 11 5.5 13 3.3

aGenotypic and allelic frequencies are shown as absolute and percentage data.

Table 3. The Clinical Features of the ALAD 177G>C (rs1800435) Carriers and Non-
Carriers in the Study Populationa

Characteristic ALAD2
Carriers (N =

100)

ALAD1
Carriers (N =

200)

P Value

Age, y 39.6 (15.4) 41.7 (13.2) 0.53

Gender, female/male 8/15 113/164 0.66

BMI, kg/m2 23.5 (4.8) 24.3 (4.9) 0.49

Platelet × 109 /L 311.12 (91.2) 291.62 (85.9) 0.19

ALT, IU/L 29.4 (13.9) 19.4 (10.1) 0.041

ALP, IU/L 207.0 (104.3) 147.7 (59.2) 0.15

Cholesterol, mg/dL 174.1 (50.3) 172.7 (36.6) 0.89

HDL, mg/dL 46.2 (9.1) 46.9 (10.2) 0.71

TG, mg/dL 146.9 (125.4) 140.3 (104.8) 0.80

FBS, mg/dL 90.0 (26.0) 86.2 (18.5) 0.50

Insulin, IU/mL 7.64 (4.33) 8.47 (6.19) 0.40

aValues are expressed as mean (SD).

high morbidity and mortality, especially in the developing
countries. Therefore, with reference to the hypothesis that
air pollution influences the development of NAFLD, as an
important economic burden and health problem, it must
be assessed by measuring the level of lead in blood and
through mechanisms related to systemic oxidative stress.
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