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Abstract

Context: Somatic mutation theory has been considered as a potential cause for cancer. However, major inconsistencies with the
gene theory have necessitated serious reconsideration of this assumption. According to these inconsistencies, cancer may be con-
sidered as a metabolic disorder. According to the mitochondrial metabolic theory, substrate-level phosphorylation has been sug-
gested to be superior to oxidative phosphorylation in cancer cells. Cancer metabolic therapies such as ketogenic diets (KD) and
limitation in glutamine and calorie can be beneficial and are in line with this theory. In this study, we have reviewed the potential
effects of KD as well as glutamine and calorie restriction in various types/stages of cancer with a focus on possible mechanisms.
Evidence Acquisition: A comprehensive electronic search of different databases was performed using “cancer”, “ketogenic diet”,
and “metabolic” as the main keywords. A comprehensive electronic search of different databases was performed using “cancer”,
“ketogenic diet”, and “metabolic” as the main keywords.
Results: Emerging evidence has indicated that KD can affect tumor cells by reducing glucose availability and simultaneous eleva-
tion of ketone bodies as non-fermentable metabolic fuels. KD has been suggested to be more effective as a non-toxic therapeutic
measure in combination with glutamine targeting agents, chloroquine for lysosomal targeting, hyperbaric oxygen therapy, and
calorie restriction.
Conclusions: This metabolic approach can be considered as a promising non-toxic strategy for cancer management.
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1. Context

Many of the current cancer treatments have consid-
ered cancer as a genetic disorder. However, major in-
consistencies with the gene theory have necessitated se-
rious reconsideration of this assumption. For instance,
the absence of gene and chromosomal mutations in some
cancers that reinforce the somatic mutation theory (1-
4); driver gene mutations in various normal human tis-
sues including the breast (5-7); and lack of various can-
cers in chimpanzees despite the large similarity in gene se-
quence with humans are some pieces of evidence indicat-
ing this inconsistency (8-10). Moreover, nuclear/cytoplasm
transfer experiments have shown the possibility of nor-
mal cell and tissue production from tumorigenic nuclei
relocated in normal mitochondria containing cytoplasm
(11). Recent reports have shown that multiple oncogenic

pathways and growth behavior can be down-regulated in
metastatic breast cancer cells by normal mitochondria (12,
13). These findings indicate that normal mitochondrial
function plays a vital role in suppressing tumorigenesis re-
gardless of the tumor nucleus gene or chromosomal ab-
normalities. These findings also suggest that the nuclear
genome mutations are not the primary cause of cancer.
Cancer was suggested as a metabolic disease that is caused
by an irreversible damage to cellular respiration. Cancer
cells heavily depend on glucose fermentation to lactate
for their metabolic demands even under sufficient oxy-
gen supply (14). The glucose transporter molecules on tu-
mor cell surfaces have shown a substantial up-regulation.
Also, some glycolytic enzymes including hexokinase 2, lac-
tate dehydrogenase-A, phosphofructokinase, and pyruvate
kinase-M2 have been reported to be overexpressed. Abnor-
mal function of the tricarboxylic acid (TCA) cycle enzymes
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in cancer cells cause a remarkable reduction in ATP pro-
duction via decreased oxidative phosphorylation and en-
hanced glycolysis (15, 16). The secretion of lactic acid in-
creases during increased glycolysis and can decrease the
extracellular pH around the tumor. This acidosis induces
normal cell death, enhances angiogenesis, deteriorates ex-
tracellular matrix, and suppresses tumor antigen-specific
immune responses which promote metastasis. Conse-
quently, the tumors become more aggressive and desmo-
plastic (17). Also, glycolysis generates NADPH via its pen-
tose phosphate pathway offshoot, which produces glu-
tathione that decreases reactive oxygen species–induced
death in cancer cells (18). Also, carbon chains in cancer cells
are used as precursors to produce essential cell prolifera-
tion materials including nucleic acids, proteins, and lipids
(19). In light of these findings, cancer is a chronic systemic
disease with a strong metabolic peculiarity that theoreti-
cally provides an ideal target for metabolic therapies.

Several examples of metabolic therapeutic strategies
for cancer treatment are presented in this review study.
This article has focused on the ketogenic diet (KD) and
other metabolic therapies that increase the effectiveness of
KD in metabolic treatment of cancer.

2. Evidence Acquisition

A comprehensive review of electronic databases in-
cluding ISI web of knowledge, Scopus, PubMed, and Google
Scholar using the main keywords of “cancer”, “ketogenic
diet”, and “metabolic” was performed considering the pub-
lished manuscripts until the end of June 2020. A manual
search among the references of gathered articles was also
performed to improve the precision of the review.

3. Results

3.1. Ketogenic Diet

Ketogenic diet high in fats and low in glucose, is an
effective complementary and alternative therapeutic ap-
proach for managing a variety of human cancers. Since the
number, structure, and function of the mitochondria and
subsequently, oxidative phosphorylation in cancer cells
are defective, the use of fatty acids and ketone bodies for
ATP synthesis cannot be performed (20, 21). These diets
lead to cell starvation and energy deprivation in cancer
cells while normal cells can use either glucose or ketone
bodies and survive. Besides, reduced levels of blood glu-
cose decreases insulin and insulin-like growth factor (IGF)
which are important players in cancer cell growth and pro-
liferation (22). Decreased levels of glucose will also favors
the reduction in substrates required in both glycolytic and

the pentose phosphate (PP) pathways which in turn leads
to a decrease in cellular energy, and the synthesis of glu-
tathione and nucleotide precursors.

Also it was demonstrated that under Ketogenic diets
the hypoxic, acidotic, and glucose and glutamine enriched
pro-tumorigenic microenvironment of tumor cells might
become less inflamed (23-25). Ketogenic diets are associ-
ated with reduced cellular proliferation, impeded tumor
growth, reduced inflammation, neovascularization and
angiogenesis, and increased apoptosis (26). The under-
lying mechanisms have not yet been fully characterized.
During tumor progression, many angiogenic activators
such as interleukin 8 (IL-8), tumor necrosis factor a (TNF-a),
hypoxiainducible factors (HIFs), and vascular endothelial
growth factors (VEGFs) support the process of angiogene-
sis. KD or caloric restriction in mouse glioma models dis-
suade the formation of tumor microvasculature accompa-
nied by a significant reduced levels of HIF-1a and VEGF re-
ceptor. The anti-inflammatory effects of KD are performed
by suppressing the activation of NLRP3 inflammasome and
reduction of inflammatory factors like TNF-a, interleukin
1 (IL-1), interleukin 6 (IL-6), and interleukin 18 (IL-18), and
prostaglandin E2 (PGE2).

Even at the epigenetic level, ketogenic diet and fatty
acids inhibit Histone deacetylases (HDAC) enzyme and af-
fect methylation (27, 28). RASSF1A as a tumor-suppressor
gene has been reported to be epigenetically inactivated
at high frequency in various cancer tissues. Also DNA-
methylation of HIN1 gene promoter frequently occurs in
breast cancer. Epigenetic silencing of HIN1 expression in-
duces breast cancer cell growth, migration, and invasion.
Any restoration in HIN1 expression due to the use of keto-
genic diet can help to suppress cancer cells growth. The Ki-
67 is a cell proliferation activity marker that correlates with
the clinical course and prognosis of tumors. Obviously, the
use of DNA methyltransferase inhibitors may represent a
potential therapeutic strategy for breast cancer treatment.
In totally, KD seems to promote its anti-proliferative effect
on cancer cells by creating an unfavorable metabolic envi-
ronment.

3.2. Clinical Studies

While, a large number of animal studies have provided
evidence for anti-tumor effects of KDs (29), support for
these effects is very limited in humans. Studies involving
children or adults affected with cancer have demonstrated
the safety and tolerability of ketogenic diets. These studies
are also motivating clinical trial. To the best of our knowl-
edge only 3 randomized controlled trials have been con-
ducted on the anti-cancer effects of the ketogenic diet.

In our previous study we reported that chemotherapy
combined with 12-week KDs might exert beneficial effects
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by decreasing total body fat, TNF-α, and insulin as well as
increasing IL-10. KD may lead to reductions in tumor size
and down-staging in patients with breast cancer. KD can
also improve the overall survival without any substantial
side effects on the biochemical parameters and quality of
life (30-32).

In another trial a significant between-group difference
was reported in adjusted physical function scores, cravings
for starchy foods and fast food, body fat and insulin be-
tween the patients with ovarian or endometrial cancer un-
dergoing 12 weeks of KD and the control group (33, 34).

Also, compared to a standard diet (SD), low carbohy-
drate or ketogenic diets have been reported to improve the
quality of life, physical performance, body composition,
and metabolic health in patients with breast cancer (35).

These feasible and tolerable dietary approaches might
improve the oncological outcomes and has the potential
to improve the therapeutic response to medications that
have been well documented in vitro and in vivo. However,
further randomized clinical trials are needed to confirm
these data.

3.3. Restricted Calorie

Restricted ketogenic diets can reduce glucose and ele-
vate blood ketone bodies more effectively than calorie re-
striction or KD alone. Calorie restricted ketogenic diets in-
duce both chronic and intermittent acute stress on the en-
ergy metabolism of tumor cell, while simultaneously pro-
tect and enhance the normal cell energy metabolism.

The favorable effects of fasting in chronic disease have
been reported in several previous studies as reduced calo-
rie intake provides protection against oxidative stress and
aging in various organisms.

Fasting has been proposed to promote substantial
changes in metabolic pathways and cellular processes in-
cluding autophagy and stress response, as well as decreas-
ing the IGF-1. As a result, other factors as Akt, Ras, and mTOR
will be affected and will down-regulate cell growth and
proliferation (36).

The anti-angiogenic, anti-inflammatory, and proapop-
totic effects of fasting and dietary restriction target multi-
ple cancer hallmarks (37-40) which enhances the efficacy of
chemo- and radiation therapy and reduces the side effects.
Hence, lower dosages of chemotherapeutic drugs can be
used in adjuvant therapy with calorie restriction or keto-
genic diets.

The existing data support the safety and feasibility of
these approaches and suggest an improvement in the qual-
ity of life and fatigue of patients under chemotherapy (41,
42). In another randomized trial in 13 patients with breast
cancer, demonstrated no significant differences in the tox-
icity resulted from chemotherapy in patients undergoing

fasting, while DNA damages on peripheral blood mononu-
clear cells were significantly reduced during the first 30
minutes after intervention in fasting patients (43). How-
ever, data regarding the effects of this approach on patient
survival outcomes are still controversial and need to be
considered more in future studies.

3.4. Targeting Glutamine for Metastatic Cancer

While glucose serve as a prime fuel for growth and de-
velopment of various tumors, some tumors use glutamine
(44-47). Glutamine targeting in glutamine-dependent
cancer cells can be a novel potential therapeutic ap-
proach. Glutamine plays several important roles in vari-
ous metabolic pathways. Its amide nitrogen is used for nu-
cleotide synthesis. Also, the glutamine-derived glutamate
is used in protein synthesis by providing anapleurotic
carbons to the Krebs cycle through alpha-ketoglutarate
(alpha-KG). It also participates in ATP synthesis through the
TCA cycle (48). Tumor cells in hypoxic conditions can use
the glutamine-derived ATP from the Krebs cycle. Excess
glutamine can also promote cell growth and suppress au-
tophagy through stimulating the activity of a cell signal-
ing pathway called serine/threonine kinase mammalian
target of rapamycin complex 1 (mTORC1) (49, 50).

Glutaminolysis is performed by glutaminase (GLS)
which is upregulated in several cancers. The glutaminase
inhibitor DON (6-diazo-5-oxo-L-norleucine) has shown clin-
ical benefits (45, 51). It could be more effective in combi-
nation with glycolysis inhibitors and/or calorie restriction
(52). DON has been shown to be effective in reducing both
primary tumor size and systemic metastasis (53).

Since glutamine is involved in various cellular
metabolic functions especially in the immune system,
glutamine targeting must be more emphasized regard-
ing its possible side effects than glucose targeting. As
metastatic cells with characteristics of macrophages and
other immune cells are more dependent on glutamine
as a major fuel, then glutamine targeting should be an
effective therapeutic strategy in reducing most metastatic
cancers (54).

In addition, accumulating evidence suggests that glu-
tamine metabolism is regulated by many factors includ-
ing the origin, suppressor status, epigenetic alternations,
and microenvironment of the tumor (55). These concerns
should better be considered in developing dietary based
glutamine targeting tumor therapy. The specific mecha-
nisms mediating tumor cell adaptation to glutamine limi-
tation also need to be defined (56).

3.5. Lysosomal Digestion

Phagocytosed glycoconjugates and proteins can un-
dergo lysosomal digestion and generate glucose and glu-
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tamine. It has been shown that glioblastoma cells with
myeloid properties are able to survive in extracellular ma-
trix material without any additive glucose and glutamine
(57).

Cumulative concentration of lactate in the media was
indicative of lysosomal digestion and aerobic fermenta-
tion of glycoconjugates in the extracellular matrix mate-
rial. However, the glioblastoma cells died immediately af-
ter adding chloroquine that stops the lysosomal digestion
(57) A similar mechanism has been reported in pancreatic
ductal adenocarcinoma cells under low nutrient condi-
tions (58). Hence, targeting the lysosomal digestion in low
glucose and glutamine conditions can inhibit metastatic
invasive tumors.

3.6. Ketogenic Diet in Combination with Hyperbaric Oxygen
Therapy

Hyperbaric oxygen therapy (HBOT) has been demon-
strated to enhance the ability of KD in reducing tumor
proliferation and metastasis. Although the evidence from
both animal and human studies support the anti-cancer
effect of hyperbaric oxygen therapy (59). The effective-
ness will be enhanced when it is combined with standard
care prior to radiation therapy for glioblastoma multiform
(60). However, the exact mechanism through which of hy-
perbaric oxygen affects the tumor is not clear yet. Hyper-
baric oxygen has been suggested to reverse hypoxia and
suppress tumor growth (61) and Hyperbaric oxygen ther-
apy enhances oxidative stress and peroxidation of lipids in
glioblastoma multiform cell membrane (62). Also, exoge-
nous ketones can enhance the effects of the ketogenic diet
and hyperbaric oxygen therapy (63).

Although hyperbaric oxygen and radiotherapy both in-
duce oxidative stress and kill tumor cells, normal cells are
more compatible with the former one.

Consistent with findings of previous case report stud-
ies (64, 65), a complete response has been reported with
a 6-month combination of chemotherapy, ketogenic diet,
hyperthermia, and hyperbaric oxygen therapy in a patient
with breast cancer (66).

Thus, the combined use of KD along with other
metabolic approaches and standard therapy in order to en-
hance the therapeutic response in cancer can be used to de-
sign clinical trials for non-toxic management of most can-
cers.

4. Conclusions

Glucose and glutamine restriction along with increas-
ing the non-fermentable ketones can be a potential com-
plementary strategy for cancer treatment. Also, target-
ing the lysosomal digestion through the administration of

chloroquine and hyperbaric oxygen combined with a keto-
genic diet will kill tumor cells. Data from further prospec-
tive randomized trials are needed to confirm these data.
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